
Agile Architecture &
Design

1

“There are known unknowns.

That is to say there are things that
we now know we don't know.

But there are also unknown unknowns.

There are things we do not know we don't know.”

2

There are things we do not know we don't know.”

unknown
unknowns

3

the future is hard
to predict!

focus on proven
practices

4

traditional vs agile architecture

5

traditional role

6

agile role

7

consequences of < time up front

good feel for current events

hands-on

ability to switch from micro <=> macro often & easily

fewer boat anchors

8

Design
Agile Architecture &

Design

9

Emergent Design

Rising or emerging out of anything that covers or
 conceals; issuing; coming to light.

 [1913 Webster]

Suddenly appearing; arising unexpectedly; calling for
 prompt action; urgent.

 [1913 Webster]

10

finding
abstractions &

patterns

11

last responsible moment

finding
abstractions &

patterns

12

the longer the delay => more relevant data for decision

last responsible moment

13

last responsible moment

finding
abstractions &

patterns

14

emergent design

15

finding &
harvesting

idiomatic
patterns

16

finding &
harvesting

idiomatic
patterns

17

finding &
harvesting

idiomatic
patterns

see the composed method pattern
Smalltalk Best Practice Patterns Kent Beck

18

harvesting idiomatic patterns

19

cyclomatic complexity
measures the complexity of a method/function

V(G)= e - n + 2
V(G) = cyclomatic complexity of G
e= # edges
n= # of nodes

20

cyclomatic
complexity

21

coupling

code 	

artifact

afferent efferent
x
i
t

22

http://struts.apache.org/

23

UIBean evaluateParams()

24

evaluate.*Params?

./org/apache/struts2/components/AbstractRemoteCallUIBean.java	

./org/apache/struts2/components/Anchor.java	

./org/apache/struts2/components/Autocompleter.java	

./org/apache/struts2/components/Checkbox.java	

./org/apache/struts2/components/ComboBox.java	

./org/apache/struts2/components/DateTimePicker.java	

./org/apache/struts2/components/Div.java	

./org/apache/struts2/components/DoubleListUIBean.java	

./org/apache/struts2/components/DoubleSelect.java	

./org/apache/struts2/components/File.java	

./org/apache/struts2/components/Form.java	

./org/apache/struts2/components/FormButton.java	

./org/apache/struts2/components/Head.java	

./org/apache/struts2/components/InputTransferSelect.java

./org/apache/struts2/components/Label.java	

./org/apache/struts2/components/ListUIBean.java	

./org/apache/struts2/components/OptionTransferSelect.java	

./org/apache/struts2/components/Password.java	

./org/apache/struts2/components/Reset.java	

./org/apache/struts2/components/Select.java	

./org/apache/struts2/components/Submit.java	

./org/apache/struts2/components/TabbedPanel.java	

./org/apache/struts2/components/table/WebTable.java	

./org/apache/struts2/components/TextArea.java	

./org/apache/struts2/components/TextField.java	

./org/apache/struts2/components/Token.java	

./org/apache/struts2/components/Tree.java	

./org/apache/struts2/components/UIBean.java	

./org/apache/struts2/components/UpDownSelect.java

find . -name "*.java" | xargs grep -l "void evaluate.*Params"

25

build frameworks
harvest

frameworks

26

agile architecture

27

yesterday’s best
practice is tomorrow’s

anti-pattern

28

complect
to interweave or entwine

from Latin complectī

http://www.infoq.com/presentations/Simple-Made-Easy

29

30

CRUD

images by Martin Fowler: martinfowler.com/bliki/CQRS.html

31

CQRS

http://codebetter.com/gregyoung/2010/02/16/cqrs-task-based-uis-event-sourcing-agh/

Command-Query
Responsibility
Segregation

32

33

Continuous Delivery

34

continuous… integration
everyone commits to trunk at

least once a day

deployment

delivery

deploy as the last stage of
continuous integration

software is always in
a deployable state

35

agile 101 + continuous delivery

always production
ready

business needs >
operational

concerns

36

continuous integration

Fast, automated feedback on the
correctness of your application

every time there is a change to code

37

continuous delivery
Fast, automated feedback on the

production readiness of your
application every time there is a

change — to code, infrastructure, or
configuration

38

deployment pipelines

39

commit stage

run against every check-in
mimics continuous integration
builds down-stream artifacts
if it fails, fix it immediately

40

milestone (acceptance phase)

end-to-end tests in a production-like environment
triggered by upstream success
all downstream tests will create their environments

41

42

component pipeline

43

pipelining libraries

44

45

functional reactive programming

46

Java 8 & Streams
iterate

filter

transform

47

Java 8 & Streams

48

49

micro-services

50

monoliths vs. micro-services

51

organized
around

business
capabilities

logic
everywhere

logic
everywhere

logic
everywhere

52

organized
around

business
capabilities

53

products, not projects

“you build it, you run it!”

54

decentralized data management

55

decentralized governance

56

infrastructure automation

57

design for failure

clients must respond gracefully to provider failure

aggressive monitoring:

— business relevant

— architectural

— semantic

58

small, single responsibility

“small enough to fit in your head”
!

don’t maintain — rewrite!

59

containerless, Unix services

embedded web container (Jetty / SimpleWeb)

packaged as an executable

installed the same way as httpd & similar

60

James Lewis tells the story of building
a resource oriented, event driven
system out of applications about

1000 lines long.

http://www.infoq.com/presentations/Micro-Services

61

holistic engineering

don’t over-optimize
around a particular tool or

practice and harm your
overall engineering

efficiency

62

everything interconnects

cannot separate process from architecture

tools offer a primrose path

 awesome while you’re on the path

 awful when you need to step off

63

http://kent.spillner.org/blog/
work/2009/11/14/java-build-tools.html

“Maven builds are an infinite cycle
of despair that will slowly drag you

into the deepest, darkest pits of
hell (where Maven itself was

forged).”

64

composable contextual
PowerShellRake Gant

languages frameworks

• more “out of the box”
• better contextual intelligence
• less flexibility
• less ability to evolve

• less implicit behavior
• better building blocks
• greater eventual power
• less initial power
• more flexibility

65

Dietzler’s Law

what the user wants

“Users always want 100% of what they want.”

66

how do you
choose?!?

67

opinionated

start with the
easiest

dogmaticrigid

generic

68

never
wonderful

again

69

cut & run!

70

malleability

malleable, n. - able to be hammered or pressed permanently out of
shape without breaking or cracking.

capable of being altered or controlled by outside forces

emphasize malleability

always tends towards less µ

71

annealing
refactoring and restructuring exercises require increasing effort for the
same result

plan escalating effort towards remedial architecture & design

tradeoff for reduced up-front effort

anneal, n. - heat (metal or glass) and allow to cool slowly, in order to
remove internal stresses and toughen it

 greenfield projects => emphasize malleability

 brownfield projects => maximize annealing efforts

72

prefer pro/reactive
to predictive

73

remove friction

74

simplify, un-tangle

75

evolve

76

deliver !

77

Thank you
Enjoy the conference!
Agile Architecture &

Design

78

