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“There are known unknowns. 

That is to say there are things that 
we now know we don't know.

But there are also unknown unknowns. 

There are things we do not know we don't know.”
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There are things we do not know we don't know.”

unknown 
unknowns

3



the future is hard 
to predict!

focus on proven 
practices
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traditional vs agile architecture
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traditional role
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agile role
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consequences of < time up front

good feel for current events 

hands-on 

ability to switch from micro <=> macro often & easily 

fewer boat anchors
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Design
Agile Architecture & 

Design
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Emergent Design

Rising or emerging out of anything that covers or 
      conceals; issuing; coming to light. 

      [1913 Webster]

Suddenly appearing; arising unexpectedly; calling for  
    prompt action; urgent. 

      [1913 Webster]
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finding 
abstractions & 

patterns

11



last responsible moment

finding 
abstractions & 

patterns
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the longer the delay => more relevant data for decision

last responsible moment
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last responsible moment

finding 
abstractions & 

patterns
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emergent design
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finding &  
harvesting 

idiomatic 
patterns
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finding &  
harvesting 

idiomatic 
patterns
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finding &  
harvesting 

idiomatic 
patterns

see the composed method pattern 
Smalltalk Best Practice Patterns Kent Beck
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harvesting idiomatic patterns
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cyclomatic complexity
measures the complexity of a method/function

V(G)= e - n + 2 
V(G) = cyclomatic complexity of G 
e= # edges 
n= # of nodes
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cyclomatic  
complexity
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coupling

code 	


artifact

afferent efferent
x 
i 
t
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http://struts.apache.org/
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UIBean evaluateParams()
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evaluate.*Params?

./org/apache/struts2/components/AbstractRemoteCallUIBean.java	



./org/apache/struts2/components/Anchor.java	



./org/apache/struts2/components/Autocompleter.java	



./org/apache/struts2/components/Checkbox.java	



./org/apache/struts2/components/ComboBox.java	



./org/apache/struts2/components/DateTimePicker.java	



./org/apache/struts2/components/Div.java	



./org/apache/struts2/components/DoubleListUIBean.java	



./org/apache/struts2/components/DoubleSelect.java	



./org/apache/struts2/components/File.java	



./org/apache/struts2/components/Form.java	



./org/apache/struts2/components/FormButton.java	



./org/apache/struts2/components/Head.java	



./org/apache/struts2/components/InputTransferSelect.java

./org/apache/struts2/components/Label.java	



./org/apache/struts2/components/ListUIBean.java	



./org/apache/struts2/components/OptionTransferSelect.java	



./org/apache/struts2/components/Password.java	



./org/apache/struts2/components/Reset.java	



./org/apache/struts2/components/Select.java	



./org/apache/struts2/components/Submit.java	



./org/apache/struts2/components/TabbedPanel.java	



./org/apache/struts2/components/table/WebTable.java	



./org/apache/struts2/components/TextArea.java	



./org/apache/struts2/components/TextField.java	



./org/apache/struts2/components/Token.java	



./org/apache/struts2/components/Tree.java	



./org/apache/struts2/components/UIBean.java	



./org/apache/struts2/components/UpDownSelect.java

find . -name "*.java" | xargs grep -l "void evaluate.*Params"
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build frameworks
harvest

frameworks
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agile architecture
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yesterday’s best 
practice is tomorrow’s 

anti-pattern
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complect
to interweave or entwine

from Latin complectī

http://www.infoq.com/presentations/Simple-Made-Easy
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CRUD

images by Martin Fowler: martinfowler.com/bliki/CQRS.html
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CQRS

http://codebetter.com/gregyoung/2010/02/16/cqrs-task-based-uis-event-sourcing-agh/

Command-Query  
Responsibility  
Segregation
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Continuous Delivery
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continuous… integration
everyone commits to trunk at 

least once a day

deployment

delivery

deploy as the last stage of  
continuous integration

software is always in  
a deployable state
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agile 101 + continuous delivery

always production 
ready

business needs > 
operational 

concerns
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continuous integration

Fast, automated feedback on the 
correctness of your application 

every time there is a change to code
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continuous delivery
Fast, automated feedback on the 

production readiness of your 
application every time there is a 

change — to code, infrastructure, or 
configuration
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deployment pipelines

39



commit stage

run against every check-in 
mimics continuous integration 
builds down-stream artifacts 
if it fails, fix it immediately 
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milestone (acceptance phase)

end-to-end tests in a production-like environment 
triggered by upstream success 
all downstream tests will create their environments
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component pipeline

43



pipelining libraries
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functional reactive programming

46



Java 8 & Streams
iterate

filter

transform
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Java 8 & Streams
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micro-services

50



monoliths vs. micro-services
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organized 
around 

business 
capabilities

logic  
everywhere

logic  
everywhere

logic  
everywhere
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organized 
around 

business 
capabilities
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products, not projects

“you build it, you run it!”
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decentralized data management
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decentralized governance

56



infrastructure automation
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design for failure

clients must respond gracefully to provider failure 

aggressive monitoring: 

— business relevant 

— architectural 

— semantic
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small, single responsibility

“small enough to fit in your head” 
!

don’t maintain — rewrite!
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containerless, Unix services

embedded web container ( Jetty / SimpleWeb) 

packaged as an executable 

installed the same way as httpd & similar
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James Lewis tells the story of building 
a resource oriented, event driven 
system out of applications about 

1000 lines long.

http://www.infoq.com/presentations/Micro-Services
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holistic engineering

don’t over-optimize 
around a particular tool or 

practice and harm your 
overall engineering 

efficiency 
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everything interconnects

cannot separate process from architecture 

tools offer a primrose path 

 awesome while you’re on the path 

 awful when you need to step off
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http://kent.spillner.org/blog/ 
work/2009/11/14/java-build-tools.html

“Maven builds are an infinite cycle 
of despair that will slowly drag you 

into the deepest, darkest pits of 
hell (where Maven itself was 

forged).”
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composable contextual
PowerShellRake  Gant

languages frameworks

• more “out of the box” 
• better contextual intelligence  
• less flexibility 
• less ability to evolve

• less implicit behavior 
• better building blocks 
• greater eventual power 
• less initial power 
• more flexibility
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Dietzler’s Law

what the user wants

“Users always want 100% of what they want.”
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how do you 
choose?!?
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opinionated

start with the 
easiest

dogmaticrigid

generic
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never 
wonderful 

again
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cut & run!
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malleability 

malleable, n. - able to be hammered or pressed permanently out of 
shape without breaking or cracking.  

capable of being altered or controlled by outside forces 

emphasize malleability  

always tends towards less µ

71



annealing
refactoring and restructuring exercises require increasing effort for the 
same result 

plan escalating effort towards remedial architecture & design 

tradeoff for reduced up-front effort 

anneal, n. - heat (metal or glass) and allow to cool slowly, in order to 
remove internal stresses and toughen it 

   greenfield projects => emphasize malleability 

   brownfield projects => maximize annealing efforts
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prefer pro/reactive 
to predictive

73



remove friction
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simplify, un-tangle
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evolve
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deliver !
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Thank you 
Enjoy the conference! 
Agile Architecture & 

Design

78


