
Building Microservice
Architectures

@neal4d
nealford.com

AGENDA

engineering
characteristics

what problem

 message bus
process choreographer

service orchestrator

 business services BS BS BS BS BS BS

 enterprise services ES ES ES ES ES ES

 application services AS infrastructure services IS

abstract enterprise-level coarse-grained services
owned and defined by business users

no implementation - only name, input, and output
data represented as wsdl, bpel, xml, etc.

ExecuteTrade PlaceOrder ProcessClaim

Service-oriented Architecture

 message bus
process choreographer

service orchestrator

 business services BS BS BS BS BS BS

 enterprise services ES ES ES ES ES ES

 application services AS infrastructure services IS

concrete enterprise-level coarse-grained services
owned by shared services teams

custom or vendor implementations that are one-to-
one or one-to-many relationship with business
services

CreateCustomer CalcQuote ValidateTrade

Service-oriented Architecture

 message bus
process choreographer

service orchestrator

 business services BS BS BS BS BS BS

 enterprise services ES ES ES ES ES ES

 application services AS infrastructure services IS

concrete application-level fine-grained services
owned by application teams

bound to a specific application context

AddDriver UpdateAddress CalcSalesTax

Service-oriented Architecture

 message bus
process choreographer

service orchestrator

 business services BS BS BS BS BS BS

 enterprise services ES ES ES ES ES ES

 application services AS infrastructure services IS

concrete enterprise-level fine-grained services owned
by infrastructure or shared services teams

implements non-business functionality to support
both enterprise and business services

WriteAudit CheckUserAccess LogError

Service-oriented Architecture

 message bus
process choreographer

service orchestrator

 business services BS BS BS BS BS BS

 enterprise services ES ES ES ES ES ES

 application services AS infrastructure services IS

mediation and routing

process choreography

service orchestration

message enhancement

message transformation

protocol transformation

Service-oriented Architecture

 message bus
process choreographer

service orchestrator

 business services BS BS BS BS BS BS

 enterprise services ES ES ES ES ES ES

 application services AS infrastructure services IS

Service-oriented Architecture

maximize reuse
maximize canonicality

 message bus
process choreographer

service orchestrator

 business services BS BS BS BS BS BS

 enterprise services ES ES ES ES ES ES

 application services AS infrastructure services IS

Service-oriented Architecture

incremental change
operationally complex

Yesterday’s best
practice is tomorrow’s

anti-pattern.

We inadvertently build
architectures to solve
outdated problems.

Architecture is abstract
until operationalized.

nealford.com/memeagora/2015/03/30/architecture_is_abstract_until_operationalized.html

Architecture is abstract
until operationalized.

3D 4D2D

view

controller

model

ORM ORMHibernate
4.3.8

modelCustomer
1.3.5

controllerCustomerInfo
4.3.1

viewAngularJS
1.3.15

Oracle 12c

ORMHibernate
4.4.1

modelCustomer
1.3.5

controllerCustomerInfo
4.3.1

viewAngularJS
1.3.15

Oracle 12c

nealford.com/memeagora/2015/03/30/architecture_is_abstract_until_operationalized.html

AGENDA

engineering
characteristics

what problem

Domain Driven Design

Bounded Context

+

api layer

client requests client requests client requests

Microservices Architecture
distributed architecture

api layer

client requests client requests client requests

separately deployed components

Microservices Architecture

api layer

client requests client requests client requests

service component

Microservices Architecture

api layer

client requests client requests client requests

bounded context

Microservices Architecture

service orchestration

api layer

client requests client requests client requests

Microservices Architecture

Monoliths vs. Microservices

Monoliths vs. Microservices

Products, not Projects

projects:

products:

‘s “You build it, you run it”

Conway’s Law
“organizations which design systems ... are

constrained to produce designs which are copies
of the communication structures of these

organizations”

—Melvin Conway

user interface

server-side

DBA

Orders

Shipping

Catalog

Monoliths vs. Microservices

Smart Endpoints, Dumb Pipes

<— HTTP —>
<— messaging —>

Standardize on integration, not platform

embrace polyglot solutions
where sensible

too few
languages/platforms

too many
languages/platforms

Sam Newman

Building
Microservices
DESIGNING FINE-GRAINED SYSTEMS

Standardize in the gaps between
services - be flexible about what

happens inside the boxes

Sam Newman

Building
Microservices
DESIGNING FINE-GRAINED SYSTEMS

Have one, two or maybe three
ways of integrating, not 20.

Sam Newman

Building
Microservices
DESIGNING FINE-GRAINED SYSTEMS

Pick some sensible conventions,
and stick with them.

Decentralized Data Management

versusACID BASE

 Data Management

Sam Newman

Building
Microservices
DESIGNING FINE-GRAINED SYSTEMS

Avoid distributed transactions if
at all possible

Decentralized

GovernanceDecentralized

Decentralized Governance

Decentralized Governance

Enterprise architects suffer from less
pressure to make the correct choice(s)

in microservice architectures.

Infrastructure Automation

Small, Single Responsibility

small enough to fit in your head

rewrite over maintain

(10—1000 LOC)-ish / service

single responsibility

AGENDA

engineering
characteristics

what problem

Microservice

maximize easy evolution

api layer

client requests client requests client requests

support ∆
Microservice is the first

architectural style developed
post-Continuous Delivery.

Benefits

Microservice Implementation

http://2012.33degree.org/pdf/JamesLewisMicroServices.pdf
http://www.infoq.com/presentations/Micro-Services

PCI Level 1 !!

Asynchronicity

Prefer timely partial
over slow complete

return optimized for
ranking/aggregation,

not display

Integration & Disintegration

Complected Deployments

complect, transitive verb:
intertwine, embrace, especially

to plait together production

!

Evolutionary Architecture

production

Components are
deployed.

Features are released.

Applications consist
of routing.

Evolutionary Architecture

production

Dis-integrate
services that

monitoring shows
are no longer used

How Big?

re
le

as
e

ris
k

services

Backends for Frontends

https://www.thoughtworks.com/insights/blog/bff-soundcloud

Backends for Frontends

BFF as Migration Path

AGENDA

engineering
characteristics

what problem

Design For Failure

 clients must respond gracefully to
provider failure

 aggressive monitoring:
- business relevant
- architectural
- semantic

Monitoring

Sam Newman

Building
Microservices
DESIGNING FINE-GRAINED SYSTEMS

You have to get much better at
monitoring.

Aggregating Monitors

Response Time
Response Time

Response Time

Sam Newman

Building
Microservices
DESIGNING FINE-GRAINED SYSTEMS

Capture metrics, and logs, for
each node, and aggregate them

to get a rolled up picture.

Aggregating Monitors

Synthetic Transactions

Sam Newman

Building
Microservices
DESIGNING FINE-GRAINED SYSTEMS

Use synthetic transactions to test
production systems.

Correlation IDs ID: 123

ID: 123

ID: 123

Sam Newman

Building
Microservices
DESIGNING FINE-GRAINED SYSTEMS

Use correlation IDs to track
down nasty bugs

Sam Newman

Building
Microservices
DESIGNING FINE-GRAINED SYSTEMS

Use timeouts, circuit breakers
and bulk-heads to avoid

cascading failure.

Engineering Consistency

service behavior

integration

downstream

metrics

Sam Newman

Building
Microservices
DESIGNING FINE-GRAINED SYSTEMS

Consider Service Templates to
make it easy to do the right

thing!

Orchestration

http://en.wikipedia.org/wiki/Orchestration_(computing)

Orchestration describes the
automated arrangement,

coordination, and management of
complex computer systems,
middleware, and services.

in
microservices

vs. orchestrationchoreography

Orchestration

change
address

recalc
quote

update
claims

notify
insured

Choreography

change
address

recalc
quote

update
claims

notify
insured

mediator versus broker topology

http://shop.oreilly.com/product/110000195.do

Testing Microservices

http://martinfowler.com/articles/microservice-testing/

Test Pyramid for Microservices

Inside the Box

Unit Testing

Sociable

Solitary

Integration Testing

Integration Testing

Component Testing

Component Testing

shims:

inproctester
github.com/aharin/inproctester

Plasma
github.com/jennifersmith/plasma

Component Testing

http://martinfowler.com/articles/consumerDrivenContracts.html
Consumer Driven Contracts

Contract Testing
Pact

github.com/realestate-com-au/pact

Pacto
github.com/thoughtworks/pacto

Janus
github.com/gga/janus

End-to-End Testing

as few as possible

focus on personas
& user journeys

choose endpoints wisely

rely on infrastructure as code for repeatability

make tests
data-independent

engineering

Deployment

Sam Newman

Building
Microservices
DESIGNING FINE-GRAINED SYSTEMS Abstract out underlying

platform differences to provide a
uniform deployment

mechanism.

Don’t Let Changes Build Up
staging production

Don’t Let Changes Build Up
staging production

Sam Newman

Building
Microservices
DESIGNING FINE-GRAINED SYSTEMS

Don’t let changes build up -
release as soon as you can, and

preferably one at a time!

Service Discovery

Dynamic Service Registries

https://consul.io/

http://zookeeper.apache.org

https://coreos.com/etcd/

Service Visualization

https://github.com/adrianco/spigo

Tools

www.devopsbookmarks.com/

Turnkey Platforms

Turnkey Platforms

https://www.hashicorp.com/blog/otto.html

AGENDA

engineering
characteristics

what problem

(Micro)service architectures provide unique
benefits at the cost of increased (essential)

complexity.

You must be
this tall to use
microservices

If you can't build a monolith,
what makes you think

microservices are the answer?

www.codingthearchitecture.com/2014/07/06/distributed_big_balls_of_mud.html

service-oriented
architecture

microservices
architecture

service-based
architecture

is there a middle ground?

Service-based Architecture

Service-based Architecture

service
granularity

database
scope

integration
hub

Migration

Partition Along Natural Boundaries

transactional

domain

organizational
structural

Build a small number of larger services first.

Inverse Conway Maneuver

Build teams that look like
the architecture you want

(and it will follow).
domain

case study: RealEstate.com.au

Efferent Coupling

efferent

Strive for low efferent
coupling for your team.

Continuous Delivery
Teams with low efferent coupling
deliver relatively independently

into a common integration
pipeline (without fearing breaking

each others builds).

nealford.com

@neal4d

nealford.com/books

nealford.com/videos

www.oreilly.com/software-architecture-video-training-series.html

