
Continuous Delivery Workshop

Workshop materials created by Jez Humble, Martin Fowler, Tom Sulston, & Neal Ford

Infrastructure &
Data

data & infrastructure

tests, synergistic practices,
incremental deployment

deployment pipelines

Data Management &
Migration

persistent

bulky
impedance mismatch

complexityessential

refactoring

manual work

poor collaboration

late integration

complexityaccidental

scripting all db changes incrementally

db refactoring

decouple db migration
from app migration

DB Evolution & Deployment

DbDeploy Pattern

metadata in the database

db updates are code

small incremental deltas

fail fast

DbBeploy Tool

http://dbdeploy.com

http://flywaydb.org/

001_create_initial_tables.sql:

CREATE TABLE customer (
id BIGINT GENERATED BY DEFAULT AS IDENTITY (START WITH 1)
PRIMARY KEY,
firstname VARCHAR(255),
lastname VARCHAR(255)

);

002_add_customer_date_of_birth.sql

ALTER TABLE customer ADD COLUMN dateofbirth DATETIME;

--//@UNDO

ALTER TABLE customer DROP COLUMN dateofbirth;

Liquibase

http://www.liquibase.org/

Continuous
Integration

for Databases

Prepare environment

version
control

commit
stage

commit
stage

acceptance
stage

Deploy app
service 1

service 2

test
double

Create dbs, apply schema

Add app reference data

Run acceptance tests
Test runner

acceptance
stage

use the same process everywhere

start with a clean database

apply changes incrementally

be comprehensive in change management

For DB CI We Need To:

Storage

#1: Baseline

—Create database

—Add metadata table

—Restore scheme &
reference data to current
production state

15

Baseline
Database

#2: Apply Deltas

—run each delta
in order

—stop the line if
one fails

—record success
in metadata
table

16

Baseline
Database

Apply
Deltas
Apply
Deltas
Apply
Deltas
Apply
Deltas

DB
Metadata

#3: Run Tests

17

Baseline
Database

Apply
Deltas
Apply
Deltas
Apply
Deltas
Apply
Deltas

DB
Metadata

Test!

acceptance tests verify database scripts worked

auto-rollback if possible

run each delta in order

stop the line if one delta fails

record success in db metadata table

Apply Deltas

deltas are immutable (mostly)

small, self-contained change

ordered (001.sql, 002.sql ...)

stored together

What’s a Good Delta

use empty deltas

share a db delta pool

use number ranges

encourage refactoring

Integration in the DB

Refactoring Databases

Move Column Refactoring

Move Column Refactoring

Transition Period

Move Column Refactoring

Ending Schema

app v230
compatible with db

v14

DB
version

15

DB
version

14

app v205
compatible with db

v13 and v14

app v234
compatible with db

v14

app v241
compatible with db

v14 and 15

DB
version

13

app v248
compatible with db

v15

Time

app v205
deployed

migrate
db to v14

app v230
deployed

app v234
deployed

app v234
deployed

app v248
deployed

migrate
db to v15

Decouple DB Updates:
the Expand/contract Pattern

bring the pain forward

practice, practice, practice

fail fast

update engineering practices

refactor the db

DB Deployments Still Hard

Managing
Environments &
Infrastructure

The Pain of Operations

legacy applications

The Pain of Operations
heterogeneous platforms

The Pain of Operations

poor quality software thrown
over a wall

The Pain of Operations

inordinate amount of
firefighting

The Pain of Operations

conservative, process heavy

The Pain of Operations

huge budget for operations

Horror Stories

“bankrupt in 45 minutes”

dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

devs work in ops and carry
pagers

not it’s own silo, but a liaison between
operations and developers

at inceptions, showcases, retros

devs create more deployable
software

DevOps

autonomic (self-corrects to desired state)

infrastructure = environments and supporting
services (networking, vcs, storage, mail, dns...)

desired state specified in version control

state should be known through monitoring

Managing Infrastructure

Destroy Works of Art

If someone threw a server out of the
window, how long would it take to

recreate it?

Infrastructure as Code

refactoring

testing

build pipeline
self documenting

Tools

www.devopsbookmarks.com/

Tools

manage many systems

manage configuration

enforce consistency

treat infrastructure as
code

40

. . .

SCM

System configuration

Puppetmaster

Server1
WebServers

Server1
AppServers

Server1
OtherServers

example
(HTTP)

separate the things that change from the
things that don’t

deploy the same way to all environments

flexible environment targeting

Unified Deployment

most real systems will be heterogeneous

great for creating production-like test envs,
highly parallel testing

cloud is great for utility computing and scaling
on demand

use virtualization with provisioning tools

Virtualization

www.docker.com/

Built for Robustness

Latency Monkey

Conformity Monkey

Doctor Monkey

Janitor Monkey

Chaos Gorilla

Complected Deployments

complect, transitive verb:
intertwine, embrace, especially

to plait together production

!

Evolutionary Architecture

production

Components are
deployed.

Features are released.

Applications consist
of routing.

Evolutionary Architecture

production

Conway’s Law

“organizations which design systems ... are
constrained to produce designs which are copies

of the communication structures of these
organizations”

—Melvin Conway

Inverse Conway Maneuver

Continuous Delivery Maturity Model

http://paulhammant.com/2013/03/13/facebook-tbd-take-2/

incorporate everyone into Continuous
Delivery practices

reduce friction

automate everything you can

continue to improve

measure success via cycle time

Continuous Delivery

nealford.com

@neal4d

