ThoughtWorks

Continuous Delivery Workshop

TR Alltior Hilyy Firatine S
@ Infrastructure &

CONTINUOUS Daka
DELIVERY

ThoughtWorks:

Jez HumsBLE, = -

Davip FARLEY oo p—
e NEAL FORD

Director / Software Architect / Meme Wrangler

N Workshop materials created by Jez Humble, Martin Fowler, Tom Sulston, & Neal Ford

deployment pipelines

€

tests, synergistic practices,
incremental deployment

data & infrastructure

Daka. Mahagement
&QM%?&%Q ent &

essential complexity
-

-
persistent

X \
\ X
X \
\ X

ReRee

X
\
X
\

impedance mismatch

()

accidental complexity

poor collaboration

ng

late integrati’

manual work

DB Evolution & Deployment

scripting all db changes incrementally

Ry

db refactoring

\%

decouple db migration
from app migration

Shiny Soft

Shiny DB

Shiny Soft

Shiny DB

— Axel's Maching e

DbDeploy Pattern

‘ Shiny Soft '

B

o

Shiny

— Christian's Maching e—

N\
N

(=)
S

Shiny DB

— Continuous Integration —

—.

- Test

(=)
S

Shiny DB

— Production

(==)]
S

Shiny DB

DbBeploy Tool

db updates are code
small incremental deltas
metadata in the database

fail fast

http.//dbdeploy.com

Flyway

— Shiny Soft

http://flywaydb.org/

Flyway 3

2

-—
—_——
——

ngrotwn‘l Migration2

— Shiny DB

SCHEMA _VERSION

— Shiny DB ‘

SCHEMA_VERSION

Yeah !

Empty !

— Shiny DB

(Empty

SCHEMA _VERSION

SCHEMA _VERSION

00| _create_initial_tables.sql:

CREATE TABLE customer (
1id BIGINT GENERATED BY DEFAULT AS IDENTITY (START WITH 1)
PRIMARY KEREY,
firstname VARCHAR (255),
lastname VARCHAR (255)

) 7

002_add_customer_date_of birth.sql

ALTER TABLE customer ADD COLUMN dateofbirth DATETIME;
——//@UNDO

ALTER TABLE customer DROP COLUMN dateofbirth;

Liquibase

000 < Em] L] ® = liquibase.org & & [m] (4] T
LIQUI4BASE R =
DOWNLOAD QUICK START DOCUMENTATION COMMUNITY EXTENSIONS DEV COMMERCIAL SUPPORT

“ e ASOURCE CONTROL
FOR YOUR DATABASE

ABOUT

DEVELOPMENT e e e .

Works With You Get Started

e Supports code branching and merging

Announcements

-

. Download Liquibase

‘ e Supports multiple developers 2. Create new changelog file in XML, YAML,
e Supports multiple database types JSON or SQLformat
m e Supports XML, YAML, JSON and SQL formats 3. Add changeset to changelog file
e Supports context-dependent logic 4. Run liquibase update
e Cluster-safe database upgrades 5. Commit changelog file to source control
e Generate Database change documentation 6. GOTO 3

Generate Database "diffs"

Run through your build process, embedded in your

application or on demand

e Automatically generate SQL scripts for DBA code
review

e Does not require a live database connection

Refactor Your Database

Simple commands like Create Table and Drop Column

Complex commands like Add Lookup Table and Merge Columns
Specify the exact SQL to run

Plus the ability to Generate and manage rollback logic

Quick Start Guide | Full Documentation !

~\ | B] Lo . |

R —
http.//www.liquibase.org/

Continuous
Integration
for Databases

e
L),

A

T —

version))
control

service 1

service 2

e

Prepare environment
Deploy app

Create dbs, apply schema
Add app reference data

Run acce ptance tests

For DB Cl We Need To:

apply changes incrementally

use the same process everywhere

be comprehensive in change management

-

_

Baseline
Database

~N

J

#1: Baseline

—Create database

—Add metadata table

—Restore scheme &
reference data to current
production state

#2: Apply Deltas

4)

DB —run each delta

Metadata in order
A J

_

g y ———==_ —stopthelineif
Baseline one fails

Database Apply
_ Y, \| Deltas

—record success
N metadata
table

-

_

Baseline
Database

~N

J

acceptance tests verify database scripts worked

#3: Run Tests

-

_

~N

DB

Metadata
J

Apply
Deltas

Test!

Apply Deltas

run each delta in order

stop the line if one delta fails

auto-rollback if possible

record success in db metadata table

What's a Good Delta

small, self-contained change
ordered (001.sql, 002.sql ...)
deltas are immutable (mostly)

stored together

Integration in the DB

Application Application Application
A B C

L A U W

Shared
Data

share a db delta pool
use number ranges

use empty deltas

encourage refactoring

Refoctoring Databases

R EFACTORING "+

=N iv* '

| DATABASES

Scorr W, AMBLER

PramoD |. Saparacr 5
. 7

Forewords by Martin Fowler, Johm CGralam,
Sachrin Rekhi, and Dr. Panl Dorsey

Move Column Refactoring

R EFACTORING "%
IDATABASES

Customer

FirstName
Customerl|D <<PK>>
Balance

dCCEes5Ees

*

Account

CheckMNoAccounts
{ event = before delete }

AccountlD <<PK>>
CustomerlD <<FK>>

CheckCustomerExists

{ event = before update | before insert }

Original Schema

Transition Period

Customer

FirstMName
CustomerlD =<PK=>=

daccesses

R EFACTORING
[DATABASES

Account

Balance {removal date = June 14 2007}

;’SynchrnnizeAccuuntBalance :
: { event = on update | on delete | on insert, ;
~....dropdate=June 142007} . N
CheckNoAccounts

{ event = before delete }

AccountlD <<PK>>
CustomerlD <<FK>=>
Balance

‘| SynchronizeCustomerBalance

o mmw

{ event = on update | on insert,

CheckCustomerExists
{ event = before update | before insert }

Transition Period

Move Column Refactoring

Ending Schema

Customer Account
FirstName 1 accesses 1 |AccountiD <<PK>>
CustomerlD <<PK>> CustomerlD <<FK>>
Balance
CheckNUAEEDunts CheckCustomerExists
{ event = before delete) { event = before update | before insert }

Resulting Schema

R EFACTORING "
IDATABASES

Move Column Refactoring

Decouple DB Updates:

R EFACTORING
IDATABASES

T
DB
version
13

the Expand/contract Pattern

app v205
compatible with db
vi3 and vi4

DB
version
14

app v205
Y deployed

migrate

app v230
compatible with db
vi4

app v230

Yy dbtovi4 y deployed

app v234
compatible with db
vi4

app v234
Y deployed

app v241
compatible with db
vi4 and 15

DB
version
15

app v234
Y deployed

migrate

app v248
compatible with db
v15

app v248

Yy dbtovi5 y deployed

DB Deployments Still Hard

practice, practice, practice
fail fast

bring the pain forward
refactor the db

update engineering practices

Managing
Environments &
Infrastructure

The Pain of Operations

@}Xév appiiaa&m%s

The Pain of Operations

heterogeneous platforms

The Pain of Operations

poor quality software thrown
over a wall

The Pain of Operations
&

inordinate amount of
firefighting

The Pain of Operations

conservative, process héavv

The Pain of Operations

a

huge budqget for operaﬁians

Horror Stories

OVAVAVAVAVAVAVAVAVAVY AN
VAVAVAVAVAVAVAVAVAVAVA
OVAV AVAVAVAVAVAVAVAVY AN

VAVAVAVAVAVAVAVAVAVA VS
OHAVAV AVAVAVAVAVAVAVAVY AN

VAVAVAVAVAVAVAVAVAVA VL
AVAV AVAVAVAVAVAVAVAV AN
VAVAVAVAVAVAVAVAVAVAVYA

dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

@00 < Bl O) &% = doug .com ¢] M O (4] +
Somathing can he learned in the course of nheerying things
i1 . . n
HOME IOT WORKSHOP F a n r u pt I n l I l I n u t e S [POSTS (1 COMMENTS
e ——— ectmmmsstmmANTTT
You are here: Home / DevOps / Knightmare: A DevOps Cautionary Tale DOUG SEVEN

DevOps

not it's own silo, but a liaison between
operations and developers

at inceptions, showcases, retros

ey
devs work in ops and carry Release It!
p a g e rS :’)l(‘;:‘lf-li::'l";(l:l(ll- :::]ltllf\)?.&ll'l\mn-

devs create more deployable
software

Managing Infrastructure

infrastructure = environments and supporting
services (networking, vcs, storage, mail, dns...

p

desired state specified in version control

autonomic (self-corrects to desired state)

state should be known through monitoring

1 someone th 2w server ouk gf/W:!@‘e
window, how long would EE/&&M‘@. to
recreate ik? ﬂ

/

Infrastructure as Code

5
(o

refactoring

testing

» self documenting

build pipeline

DEVOPS BOOKMARKS

THEIRIES)

Source Code Management
Continuous Integration & Delivery
Packaging & Artifacts
Virtualization & Containers
Cloud & PaaS Environments
Configuration Management
Provisioning

Orchestration

Service Discovery

Process Management
Logging & Monitoring

Metrics & Visualization

O O OO OO 88 OO O 0 0O

Security & Hardening
PLATFORM

A Linux

2= Windows

@& OSX

Go to “http://www.devopsbookmarks.com/”

Tools

devopsbookmarks.com

Ansible

A versatile orchestration engine that can
automate systems and apps. Instead of a
custom scripting language or code, it is
very simple and shell based. It is also
agent-less, so you can just start using it
right away and get things done

A p

linux, open-source, provisioning, config-mgmt,
orchestration, python

Batou

Batou makes it easy to perform
automated deployments. It combines
Fabric's simplicty and SSH automation,

with Puppet's declarative syntax and
idempotence

78) p

linux, open-source, provisioning, python

Bcfg2

bee-config (Bcfg) 2 is a centralized
configuration management server to
configure large number of systems, built

Dokku Alt

Dokku on Steroids. The smallest PaaS
implementation you've ever seen. It's fork
of original dokku. The idea behind this
fork is to provide complete solution with
plugins covering most of use-cases
which are stable and well tested.

o) 4

linux, open-source, virt, cloud-paas, provisioning,
shell?

Dokku

It uses docker, git-receive and a few
other lightweight and clever libraries to
build a quick PaaS, all around just 100
lines of code! An excellent small tool to
get started with PaaS systems. The same
developer is creating a larger scale,
production quality system called Flynn.

o) 4

linux, open-source, virt, cloud-paas, provisioning.
shell?

www.devopsbookmarks.com/

Tools

IC
C h ef/j;\ Mmanage many systems

uppet manage configuration
labs’

enforce consistency

ANSIBLE treat infrastructure as

« ¢ ¢ code

System configuration

WebServers

W \\‘

Puppetmaster

AppServers

OtherServers

example

class httpd {
package { httpd: _.\
ensure => latest 6 ' (HTTP)

}

configfile { "/etc/httpd/conf/httpd.conf": p pp

source => "/httpd/httpd.conf",
mode => 644,
require => package["httpd"]

}

group { apache: gid => 48 }

user { apache:
comment => "Apache",
uid => 48,
gid => 48,
home => "/var/www",
shell => "/sbin/nologin”

}

service { httpd:
running => true,
subscribe => [file["/etc/httpd/conf/httpd.conf"],
package["httpd"]]

class tomcat {

$tomcat_port = 735
$tomcat_password = 'badwolf'

notice("Establishing http://$hostname:$tomcat_port/")

Package { # defaults
ensure => installed,

}

package { 'tomcat6’:
}

package { 'tomcat6-user':
require => Package['tomcat6'],

}

package { 'tomcat6-admin’:
require => Package['tomcat6'],

}

file { "/etc/tomcat6/tomcat-users.xml":
owner => 'root’,
require => Package['tomcat6'],
notify => Service['tomcat6'],
content => template('tomcat/tomcat-users.xml.erb"')

}

file { '/etc/tomcat6/server.xml’:
owner => 'root’,
require => Package['tomcat6'],
notify => Service['tomcat6'],
content => template('tomcat/server.xml.erb'),

define tomcat::deployment(Spath) {

include tomcat
notice("Establishing http://Shostname:S${tomcat: :tomcat_port}/$name/™)
¥ file { "/var/lib/tomcat6/webapps/${name} .war":
owner => 'root’,
source => $path,

}

service { 'tomcat6':
ensure => running,
require => Package['tomcat6'],

}

Unified Deployment

deploy the same way to all environments

W
B

separate the things that change from the
things that don't

flexible environment targeting

Virtualization

great for creating production-like test envs,
highly parallel testing

cloud is great for utility computing and scaling
on demand

most real systems will be heterogeneous

use virtualization with provisioning tools

*docker

www.docker.com/

Multiplicity of

hardware
environments

Multiplicity of Stacks

Docker is a shipping container system for code

oo Staticwebsite %® User DB g¢® Web frontend :J: Queue op AnalyticsDB

An engine that enables any
payload to be encapsulated

as a lightweight, portable,
self-sufficient container...

T
-)

Development QA server Customer Data Public Cloud
VM Center

¢A121eudosdde

...that can be manipulated using
standard operations and run

consistently on virtually any
hardware platform

-—- W~
-— @
- W

-—rUTe—
-—- W
- W

Production Contributor’s
Cluster laptop

App2inb pue Ajyjoows

Pesanul
sdde pue sa2iA3s 0Q

aesdiw jue)

Push

’g‘ Docker
S > Container
2 Image
> Registry

Source

Code
o_." Docker Engine
Repository Docker Engine

‘R O 0
(o) o o
= = >
— .. -~
& o s
- - =
" " "
- - N
> o o

*docker

Containers vs. VMs

VM

Container

Containers are isolated,
but share OS and, where
appropriate, bins/libraries

*docker

CPU by image
0.6

0.4

0.2

T T
04:30 04:45

. 0.16 Avg: 0.22 docker.cpu.user
I oos Avg: 0.02 docker.cpu.user

RSS by image
15M

10M

5M

05:00

{image:datadog/docker-dogstatsd:latest}
{image:redis:2.8}

04:30 04:45

B o12am Avg: 12... docker.mem.rss
B w Avg: 0.6... docker.mem.rss

05:00

{image:datadog/docker-dogstatsd:latest}
{image:redis:2.8}

05:15

05:15

CPU by container
0.6

Monitor Docker with Datadog

05:00 05:15

{name:agitated_mcclintock}
{name:alq-redis}
{name:alg-redis,name:determined_ptolemy/re...

{name:determined ptolemy}

0.4
0.2
0 T T
04:30 04:45
I o016 Avg: 0.22 docker.cpu.user
. 0.05 Avg: 0.02 docker.cpu.user
[na Avg: 0 docker.cpu.user
M N Ava: 0 docker.cou.user
RSS by image
15M
10M
SM
0 T
04:30
Avg: 12.... docker.mem.rss
Avg: 0.6... docker.mem.rss
Avg: 0.2... docker.mem.rss
I N Avg: 0.0... docker.mem.rss

04:52:40

{name:agitated_mcclintock}

{name:alq-redis}
{name:alq-redis,name:determined_ptolemy/re...
{name:determined ptolemy}

A0

¢ RANCHER

00 < > m

=3 RANCHER

& (@ @ rancher.com [i}

Rancher RancherOS Downloads ~ Docs ~ About ~ Forums

e Ac e oUT
Private Container Service

Rancher makes it simple to deliver the power of Docker to everyone in your organization.

OUR PRODUCTS

== RANCHER =3 RANCHER

A software platform for deploying a private

A minimalist OS built explicitly to run

container service. Docker

® < 0 3 @

Il

techblog.netflix.com

&+1 < 256 Mer ¥ Neste blogg»

ﬁﬁlo‘j

Opprett blogg Logg p

NETFLIX

Tuesday, July 19, 2011

The Netflix Simian Army

We've talked a bit in the past about our move to the cloud and John shared some of our lessons learned in
going through that transition in a previous post. Recently, we’ve been focusing on ways to improve
availability and reliability and wanted to share some of our progress and thinking.

The cloud is all about redundancy and fault-tolerance. Since no single component can guarantee 100%
uptime (and even the most expensive hardware eventually fails), we have to design a cloud architecture
where individual components can fail without affecting the availability of the entire system. In effect, we have
to be stronger than our weakest link. We can use techniques like graceful degradation on dependency
failures, as well as node-, rack-, datacenter/availability-zone and even regionally-redundant deployments.
But just designing a fault tolerant architecture is not enough. We have to constantly test our ability to actually
survive these "once in a blue moon" failures.

Imagine getting a flat tire. Even if you have a spare tire in your trunk, do you know if it is inflated? Do you
have the tools to change it? And, most importantly, do you remember how to do it right? One way to make
sure you can deal with a flat tire on the freeway, in the rain, in the middle of the night is to poke a hole in your
tire once a week in your driveway on a Sunday afternoon and go through the drill of replacing it. This is
expensive and time-consuming in the real world, but can be (almost) free and automated in the cloud.

This was our philosophy when we built Chaos Monkey, a tool that randomly disables our production
instances to make sure we can survive this common type of failure without any customer impact. The name
comes from the idea of unleashing a wild monkey with a weapon in your data center (or cloud region) to
randomly shoot down instances and chew through cables -- all the while we continue serving our customers
without interruption. By running Chaos Monkey in the middle of a business day, in a carefully monitored
environment with engineers standing by to address any problems, we can still learn the lessons about the
weaknesses of our system, and build automatic recovery mechanisms to deal with them. So next time an
instance fails at 3 am on a Sunday, we won't even notice.

Inspired by the success of the Chaos Monkey, we've started creating new simians that induce various kinds
of failures, or detect abnormal conditions, and test our ability to survive them; a virtual Simian Army to keep
our cloud safe, secure, and highly available.

Latency Monkey induces artificial delays in our RESTful client-server communication layer to simulate
service degradation and measures if upstream services respond appropriately. In addition, by making very
large delays, we can simulate a node or even an entire service downtime (and test our ability to survive it)

withaut nhyveically hri thaca inet: down_This can ha narticularlvy neafiil whan tactina tha fault.

The Netflix Tech Blog

Links

Netflix US & Canada Blog
Netflix America Latina Blog
Netflix Brasil Blog

Netflix Benelux Blog
Netflix DACH Blog

Netflix France Blog
Netflix Nordics Blog
Netflix UK & Ireland Blog
Netflix ISP Speed Index
Open positions at Netflix
Netflix Website

Facebook Netflix Page
Netflix Ul Engineering

RSS Feed

About the Netflix Tech Blog

This is a Netflix blog focused on
technology and technology issues.
We'll share our perspectives,
decisions and challenges regarding
the software we build and use to
create the Netflix service.

Blog Archive

or Robustness

Latency Monkey
Conformity Monkey
Doctor Monkey
Janitor Monkey

Chaos Gorilla

Complected Deployments

complect, transitive verb:
intertwine, embrace, especially
to plait together production

Evolutionary Architecture

Components are
deployed.

Features are released.

Applications consist
of routing.

production

Evolutionary Architecture

production

Conway’s Law

“organizations which design systems ... are
constrained to produce designs which are copies
of the communication structures of these
organizations”

“Pacnis

- R —

Siloed functional teams... ... lead to silod application architectures.
Because Conway's Law

—Melvin Conway

o))

pr————————

Inverse Conway Maneuver

Cross-functional teams...

,

.

\

»

’
,
’

3
b}

B

L4

-
-

- - - .-
e

... organised around capabilities

Because Conway's Law

.
’
b ’
- - - -
o
’
”,
,
,
- - - - .
.
-

-

-

-

-

Continuous Delivery Maturity Model

release 1 release every 1 release every o : 10 releases 100 releases
a daily release
frequency{ 100 days 10 days Y a day a day
examples { C Many Enterprises >: Faceboo"\';‘:-Qacebook @
' : 2011 : 2013

Trunk Based Development (TBD)
+ Branch for Release
(point releases from same branch)

branch Develop on release
model branches: ! ! b= Pull Requests to a Release branch. =i
b= Merge somewhere =={ ! ' : :
after release : TBD + Release i : :
A from trunk : :
o = = o= = Formal QA Dept = = = = = = | | ! :
QA : ! 2 : Developers QA : 2
role Thorough Expedited : their own changes ' 2
b= Release =i Release m—)f : | :
Certification Certification : : :
. i n Automated Functional Tests n |
QA 1 1 1 1 1
auto- | | i Speedy & Thorough Functional Tests —|—|
mation : : : ' !
' b= 'Eat Your Own Dogfood' usage of app . i
: : ; ; |
} : : Toggles for tuning the production stack : |
Toggles : ! ' | :
| b= Toggles for hiding functionality that is not ready yet e pe—f
: : : : :
| Delta Scripts for DBs | : :
Roll- : . Practiced Rollbacks i : :
backs? - !
|

=t Tiers are forwards/ackwards compatible by design =]
I ' '

http://paulhammant.com/2013/03/13/facebook-tbd-take-2/

Continuous Delivery

reduce friction

automate everything you can

Incorporate everyone into Continuous
Delivery practices

measure success via cycle time

continue to improve

Il OREILLY

A
vy

ThoughtWorks

| NEAL FORD
Presentation

PATTERNS Fctlonal
SRS Thinking

PARADIGM OVIR SINTAX

Director / Software Architect / Meme Wrangler

NEAL FORD | MATTHEW MCCULLOUGH | NATHANIEL SCHUTTA

Neal Ford

ART

JAVA WEB, 477

DEVELOPMENT =

Clojure Functior;al Thinking:
Inside Out Functional

programming using
Java, Clojure & Scala

Engmeering
Practices

Neal Ford

O'REILLY"

SOFTWARE ARCHITECTURE SERIES

—— _—

OREILLY OREILLY OREILLY OREILLY

SOFTWARE ARCHITECTURE SERIES SOFTWARE ARCHITECTURE SERIES SOFI’WARE ARCHITECTURE SERIES ‘ SOFTWARE ARCHITECTURE SERIES

Stuart Halloway
& Neal Ford Neal Ford

OREILLY OREILLY

SOFTWARE ARCHITECTURE SERIES SOFTWARE ARCHITECTURE SERIES

Software
Architecture
Fundamentals
Understanding

the Basics

Fundamentals, Patterns, AntiPatterns,
Soft Skills, Continuous Delivery,
and Code Analysis Tools

Neal Ford, Mark Richards
VIDEO

Software
Architecture
Fundamentals
Beyond the Basics

Tradeoffs, Abstraction,
Comparing Architectures,
Integration and Enterprise
Architecture, Emergent Design

Neal Ford, Mark Richards
VIDEO

Software
Architecture
Fundamentals
Soft Skills

Problem Solving, Decision
Making, Refactoring,
Productivity & Communications

Neal Ford, Mark Richards
VIDEO

Software
Architecture
Fundamentals
People Skills

Leadership, Negotiation,
Meetings, Working with People,
and Building a Tech Radar

Neal Ford, Mark Richards
VIDEO

Software
Architecture
Fundamentals
Service-Based
Architectures

Structure, Engineering
Practices, and Migration

Neal Ford, Mark Richards
VIDEO

Engineering
Practices for
Continuous

Delivery

Neal Ford

VIDEO

