
Continuous Delivery

@neal4d
nealford.com

6 Ways Continuous Delivery Impacts Architects

for Architects

http://nealford.com

Effective engineering practices
for software projects.

Continuous Delivery

Yesterday’s best practice

is tomorrow’s anti-pattern.

Yesterday’s best practice

is tomorrow’s anti-pattern.

www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF

Yesterday’s best practice

is tomorrow’s anti-pattern.

1990

1992

1996

Yesterday’s best practice

is tomorrow’s anti-pattern.

2002

2007

2008

Yesterday’s best practice

is tomorrow’s anti-pattern.

Yesterday’s best practice

is tomorrow’s anti-pattern.

martinfowler.com/bliki/AntiPattern.html

http://martinfowler.com/bliki/AntiPattern.html

Architecture is abstract
until operationalized.

nealford.com/memeagora/2015/03/30/architecture_is_abstract_until_operationalized.html

http://nealford.com/memeagora/2015/03/30/architecture_is_abstract_until_operationalized.html

Architecture is abstract
until operationalized.

3D 4D2D

view

controller

model

ORM ORMHibernate
4.3.8

modelCustomer
1.3.5

controllerCustomerInfo
4.3.1

viewAngularJS
1.3.15

Oracle 12c

ORMHibernate
4.4.1

modelCustomer
1.3.5

controllerCustomerInfo
4.3.1

viewAngularJS
1.3.15

Oracle 12c

nealford.com/memeagora/2015/03/30/architecture_is_abstract_until_operationalized.html

1

http://nealford.com/memeagora/2015/03/30/architecture_is_abstract_until_operationalized.html

Expanding Role of Architect

pre-CD
engineering DBAs operations

pre-CD

Expanding Role of Architect

post-CD
engineering DBAs operations2

Agenda

engineering
practices

deployment
models

components &
services

coupling &
cohesion

Metrics & Visualizations

Structural Coupling Metrics

code
artifact

afferent efferent
x
i
t

Temporal Coupling

X-Ray
xray.inf.usi.ch/xray.php

http://xray.inf.usi.ch/xray.php

XRay Dependencies

Class/package
Dependencies

ArgoUML

Understand the structure of your
code as it evolves.

3

Agenda

engineering
practices

deployment
models

components &
services

coupling &
cohesion

Use components to decouple
parts of your application that

change at different rates.

Component

Library
Service

Components are units of software that can
be independently replaced and upgraded

Libraries run within a single
process, communicating

through language function
call mechanisms

Services run in separate
processes, communicating with
networking mechanisms such

as HTTP or TCP/IP

Components

Libraries

Framework

Pricing engine

Settlement
engine

Reports engine

Portfolio
management
application

CDS pricing
library

Managing Dependencies

 “DLL Hell”

 2 approaches:

 the ubiquitous lib directory

 transitive dependency management
tool*

*all platforms (eventually) rely on tooling

Anti-pattern: Cycles

 circular dependencies

 Java tooling promotes/ignores cycles

 makes the system hard to componentize

 makes lifecycle more complex

Kirk Knoernschild
http://www.kirkk.com/main/Main/JarAnalyzer

http://techdistrict.kirkk.com/

Consequences of Ignoring…

struts 1.0

struts 2

Structure 101

 analyzes codebase

 provides “to do” list of refactorings

 allows developers to untangle cycles

structure101.com/

http://structure101.com/

Dependency Cycle
clarkware.com/software/JDepend.html

http://clarkware.com/software/JDepend.html

Dependency Constraint

Pipelining Libraries

Framework

Pricing engine

Settlement
engine

Reports engine

Portfolio
management
application

CDS pricing
library

?
Anti-pattern: Diamond

Dependencies

Pipelining Libraries

Component

Library
Service

Components are units of software that can
be independently replaced and upgraded

Libraries run within a single
process, communicating

through language function
call mechanisms

Services run in separate
processes, communicating with
networking mechanisms such

as HTTP or TCP/IP

Services

Service-based architectures promote coupling
from application to integration architecture.

en.wikipedia.org/wiki/Fallacies_of_distributed_computing

http://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

The network is reliable.

Latency is zero.

Bandwidth is infinite.

The network is secure.

Topology doesn’t change.

There is one administrator.

Transport cost is zero.

The network is
homogeneous.

en.wikipedia.org/wiki/Fallacies_of_distributed_computing

http://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

Service-based architectures promote coupling
from application to integration architecture.

explicit about
coupling

forces coarser-
grained coupling

engineering
safety nets

undisciplined coupling = mess
coupling dynamics become integration issues

Types of SOA

Micro Service-oriented

Service-based

SOA (Service-oriented Architecture)

abstraction

service taxonomy

shared resources

middleware

interoperability

Microservice

api layer

client requests client requests client requests

Service Based

rest rest rest

Service Based Variants

 event
channel

component
service

module module

module module

client app 1

client app 2

 contract creation, maintenance,
versioning, and coordination

Distributed Architecture Challenges

 remote process responsiveness and
server availability

 event
channel component

service

module module

module module

client

 event
channel

X
Xtimeout 

value?

X
X

Distributed Architecture Challenges

 slower service invocations due to remote access
protocols and distributed components

 event
channel component

service

module module

module module

client

 event
channel

component
service

module module

module module

client

+t +t

+t+t

Distributed Architecture Challenges

 authenticating and authorizing remote
connections and service invocations

X ? event
channel

component
service

module module

module module

good client

bad client

Distributed Architecture Challenges

 distributed logging facilities to provide a
holistic view of a transaction

 event
channel

component
service

module module

module module

client app
component

service

module module

module module

component
service

module module

module module

 event
channel

 event
channel

Distributed Architecture Challenges

 atomic transactions and transaction scope

 event
channel

component
service

module module

module module

client app

component
service

module module

module module

 event
channel

X

Distributed Architecture Challenges

Bounded Context

+

Move to Bounded Context…

microservice
service-based

…prefer Choreography to Orchestration

traditional SOA /
ESB pattern

Because Conway’s Law!

pack of
enterprise architects

Consumer Driven Contracts

Consumer Driven Contracts
martinfowler.com/articles/consumerDrivenContracts.html

http://martinfowler.com/articles/consumerDrivenContracts.html

Manage coupling
intelligently.

transactional

organizational

structural

domain

4
semantic

user interface

server-side

DBA

Orders

Shipping

Catalog

Agenda

engineering
practices

deployment
models

components &
services

coupling &
cohesion

Machine Provisioning
manage many systems

manage configuration

enforce consistency

treat infrastructure as
code. . .

Deployment Pipelines

commit Stage

Run against each check-in (continual
integration)
Starts building a release candidate
If it fails, fix it immediately

Commit stage

Compile
Unit test

Assemble
Code analysis

source code
commit tests
build scripts

deployable binaries
test reports
metadata

Version
control

Artifact
repository

Pipeline Construction

commit functional
test

user
acceptance test

staging …

increasing confidence in production readiness

artifact
respository

artifact
respository

artifact
respository

artifact
respository

Pipeline stages = feedback
opportunities

UAT Stage

End-to-end tests in production-like
environment
Triggered when upstream stage passes
First DevOps-centric build

77

Acceptance test stage

Configure environment
Deploy and smoke test

Acceptance test
Tear down

acceptance tests
deployment scripts
configuration data test reports

metadata

Version
control

Artifact
repository

binariesArtifact
repository

Manual Stage

UAT, staging, integration, production, …
Push versus Pull model
Deployments self-serviced through push-
button process

78

Later stages

Configure environment
Deploy and smoke test
Tear down on request

deployment scripts
configuration data

test reports
metadata

Version
control

Artifact
repository

binariesArtifact
repository

79

Artifact repository

Source
code

Commit stage

Compile
Commit tests

Assemble
Code analysis

reports
binaries
metadata

Acceptance stage

Configure environment
Deploy binaries

Smoke test
Acceptance tests

Capacity stage

Configure environment
Deploy binaries

Smoke test
Run capacity tests

UAT

Configure environment
Deploy binaries

Smoke test

Env &
app

config

reports
metadatabinaries

Production

Configure environment
Deploy binaries

Smoke test

Env &
app

config

binaries
reports
metadata

Operations
perform

push-button
releases

Testers
Self-service
deploymentsDevelopers

See code metrics
and test failures

Version control

Integration Pipeline in Go CD

Integration Pipeline in Go CD

Deployment Pipeline Fan Out

Deployment Pipeline Fan Out

Agenda

engineering
practices

deployment
models

components &
services

coupling &
cohesion

Feature Branching
versus

Trunk-based Development

Feature Branching

Big Scary
Merge

No
Refactoring

trunk-based development

No combined
features

[featureToggles]
wobblyFoobars: true
flightyForkHandles: false

Config File

<toggle name=wobblyFoobars>
 ... various UI elements
</toggle>

some.jsp

forkHandle = (featureConfig.isOn(‘flightlyForkHandles)) ?
 new FlightyForkHander(aCandle) :
 new ForkHandler(aCandle)

other.java

feature toggles

www.togglz.org

http://www.togglez.org

removed as soon as
feature decision is resolved
Feature toggles are purposeful

technical debt added to support
engineering practices like

Continuous Delivery.

taxonomy

works on all platforms &
technology stacks

ubiquitous

Release
Strategies

Canary Releasing

Canary Releasing

reduce risk of release

multi-variant testing

performance testing

Canary Releasing

www.togglz.org

http://www.togglez.org

Mature engineering
practices.5

You must be
this tall to use
microservices

Complected Deployments

complect, transitive verb:
intertwine, embrace, especially

to plait together production

!

Evolutionary Architecture

production

Components are
deployed.

Features are released.

Applications consist
of routing.

Towards Evolutionary Architecture

production6

Hypothesis Driven
Development

vision, strategy,
business goals, research

ideation

portfolio
of ideas

selected
experiments:

pivot

fold double
down

Manage
coupling intelligently.

Continuous Delivery for Architects
Yesterday’s best practice is

tomorrow’s antipattern.

Expanding role
of architect.Understanding

shifting structure.

Mature engineering
practices.

towards evolutionary architecture…

nealford.com

@neal4d

nealford.com/books

nealford.com/videos

www.oreilly.com/software-architecture-video-training-series.html

http://nealford.com/books/
http://nealford.com/videos
http://www.oreilly.com/software-architecture-video-training-series.html

