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www.ibm.com/developerworks/java/library/j-eaed1/
index.html?S_TACT=105AGX02&S_CMP=EDU

bit.ly/nf-ead-all
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obfuscators

what is software design

architecture vs. design

harvesting patterns

enablers

agenda
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“There are known 
unknowns. 

That is to say 
there are things 
that we now know 
we don't know.

But there are 
also unknown 
unknowns. 

There are things we do not 
know we don't know.”
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big up-front
architecture 

& design
fail

because
of unknown
unknowns

There are things we do not 
know we don't know.”
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the future is 
hard to predict!
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what is software design?

Jack C. Reeves
fall 1992, c++ journal

http://www.developerdotstar.com/mag/articles/reeves_design.html

“what is software design?”
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“The final goal of any 
engineering activity is 

some type of 
documentation”

“When the design effort is 
complete, the design 

documentation is turned over to 
the manufacturing team.”
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manufacturing for 
physical things
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vs
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software
manufacturing

compilation
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design ==
complete source code
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$$$software traditional
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software designs are 
relatively easy to turn out

Jack Reeves

“Given that 

and essentially free to build, 

an unsurprising revelation is 
that software designs tend to be 
incredibly large and complex.”
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testing = engineering rigor in software
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“Software may be 
cheap to build, 

but it is 
incredibly 

expensive to 
design.”

Jack Reeves
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architecture

design stuff that’s 
hard to 

change later

(as little 
of that 
stuff as 
possible)
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designdesign
emergent
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Emergent, a. 
[L. emergens, p. pr. of emergere.]

   1. Rising or emerging out of a fluid   
      or anything that covers or
      conceals; issuing; coming to light.
      [1913 Webster]

 2. Suddenly appearing; arising 
    unexpectedly; calling for 
    prompt action; urgent.
      [1913 Webster]
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finding abstractions 
& patterns
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domain

patterns describe effective abstractions

patternsidiomatic 

technical

validation
security
transactional data

Patterns

business rules
shared functionality
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last responsible 
moment

finding & harvesting 
idiomatic patterns
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the longer you can 
wait, the better 

the decision

time

knowledge / context
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Things that 
Obscure 
Emergent 
Design
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complexity
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accidental
complexity
all the externally imposed
ways software becomes complex

essential 
complexity
inherent complexity

VS
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hunting 
season

field level 
security

EJB / 
Biztalk

essential accidental

examples
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technical 
!!   debt
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technical debt
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reckless prudent

deliberate

inadvertent

“We don’t have 
time for design.”

“We must ship
now & deal with 

the consequences.”

“What’s layering?”
“Now we know
how we should
have done it.”

http://martinfowler.com/bliki/TechnicalDebtQuadrant.html
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you must convince someone technical 
debt exists...
...start a conversation about 
repayment

negotiating 
repayment

demonstration >
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cyclomatic complexity
measures complexity of a method/function

V(G)= e - n + 2
V(G) = cyclomatic complexity of G
e= # edges
n= # of nodes

ba
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start

if (c1)

f1() f2()

if (c2)

f3() f4()

end

start

if (c1)

f1() f2()

if (c2)

f3() f4()

end
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convincing 
metrics

demonstration trumps 
discussion
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sample instance (http://nemo.sonarsource.org/)

open source

nice visualizations for common metrics

sonar
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time machine 
(struts)
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time machine 
(spring batch)
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motion chart
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rampant 
genericness
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increases software entropy

“if we build lots of layers 
for extension, we can easily 
build more onto it later”

generic obfuscation

accidental complexity

genericness
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project time

technical debt

when you
add it

when you
start using it
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Emergent 
Design 
Accelerators
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atomic understanding of intent

more about design than testing

design will emerge from tests

less accidental complexity

better abstractions

test driven 
design
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perfect number 
case study

∑ of the factors == number
(not including the number)
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test-after, 1st pass

2

8

?
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whole-number
square roots
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########

##
#

#

#
#
# #

?
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test-after

TDD
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refactoring 
towards
design

57
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idiomatic “unit 
of work” pattern

see the composed method pattern
Smalltalk Best Practice Patterns Kent Beck
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Refactoring to 
Harvest
Idiomatic 
Patterns
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class

afferent 
coupling

class

class

class class

class

class
1

2

3

6

5

4

ba
ck
gr
ou
nd
 i
nf
o

61



http://struts.apache.org/
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UIBean evaluateParams()
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evaluate.*Params ?

./org/apache/struts2/components/AbstractRemoteCallUIBean.java

./org/apache/struts2/components/Anchor.java

./org/apache/struts2/components/Autocompleter.java

./org/apache/struts2/components/Checkbox.java

./org/apache/struts2/components/ComboBox.java

./org/apache/struts2/components/DateTimePicker.java

./org/apache/struts2/components/Div.java

./org/apache/struts2/components/DoubleListUIBean.java

./org/apache/struts2/components/DoubleSelect.java

./org/apache/struts2/components/File.java

./org/apache/struts2/components/Form.java

./org/apache/struts2/components/FormButton.java

./org/apache/struts2/components/Head.java

./org/apache/struts2/components/InputTransferSelect.java

./org/apache/struts2/components/Label.java

./org/apache/struts2/components/ListUIBean.java

./org/apache/struts2/components/OptionTransferSelect.java

./org/apache/struts2/components/Password.java

./org/apache/struts2/components/Reset.java

./org/apache/struts2/components/Select.java

./org/apache/struts2/components/Submit.java

./org/apache/struts2/components/TabbedPanel.java

./org/apache/struts2/components/table/WebTable.java

./org/apache/struts2/components/TextArea.java

./org/apache/struts2/components/TextField.java

./org/apache/struts2/components/Token.java

./org/apache/struts2/components/Tree.java

./org/apache/struts2/components/UIBean.java

./org/apache/struts2/components/UpDownSelect.java

!
find . -name "*.java" | xargs grep -l "void evaluate.*Params"
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extract the 
embedded 
framework
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Capturing
    Idiomatic  
        Patterns
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APIs
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idiomatic “unit 
of work” pattern
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Java

69



Groovy
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Annotations
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73
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annotations add expressiveness
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Sticky Annotations (Ruby)
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limiting testing
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conditional 
method definition

80



annotation
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using hook 
methods
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cross-cutting 
concerns
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Struts

Ruby on Rails

expressiveness matters!
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...you want the most expressive 
medium you can find

a lot!

if code == design...

push for expressiveness

frequently meta-language nature

expressiveness 
matters
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object-oriented

imperative

structured / modular

anti-objects

functional

abstraction 
styles
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collaborative  
  diffusion
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“The metaphor of objects can go 
too far by making us try to 
create objects that are too much 
inspired by the real world. “

“...an antiobject is a kind of 
object that appears to 
essentially do the opposite of 
what we generally think the 
object should be doing.”
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last responsible 
moment

finding & harvesting 
idiomatic patterns
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last responsible moment

time

co
m

pl
ex

it
y
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spikes are your
friends
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case study
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evolution
 of

asynchronous  
messaging

96



progress bars & 
async upload

backgrounDrb
http://backgroundrb.rubyforge.org/
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progress bars

timed events

continually run
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for simple message 
queue backed by 

database
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switch to a real 
messaging queue 

(Starling)
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project time

don’t know what we don’t know

“buy the fanciest one we 
can” (just in case)
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project time

technical debt

when you
add it

when you
start using it
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project time

don’t know what we don’t know

“buy the fanciest one we 
can” (just in case)

pay $$$ for technical debt…

…that you may never justify
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messaging 
infrastructure

messaging 
infrastructure

convert architectural 
elements to design
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Summary
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evolution & 
emergence require 
good engineering 

practices
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trying to predict the 
future leads to over-

engineering
107



prefer pro/re-active 
to

predictive
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This work is licensed under the Creative Commons 
Attribution-Share Alike 3.0 License. 

http://creativecommons.org/licenses/by-sa/3.0/us/
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