
 NEAL FORD software architect / meme wrangler

 ThoughtWorks®

 nford@thoughtworks.com
 3003 Summit Boulevard, Atlanta, GA 30319
 www.nealford.com
 www.thoughtworks.com
 blog: memeagora.blogspot.com
 twitter: neal4d

emergent design

1

www.ibm.com/developerworks/java/library/j-eaed1/
index.html?S_TACT=105AGX02&S_CMP=EDU

bit.ly/nf-ead-all
2

obfuscators

what is software design

architecture vs. design

harvesting patterns

enablers

agenda

3

“There are known
unknowns.

That is to say
there are things
that we now know
we don't know.

But there are
also unknown
unknowns.

There are things we do not
know we don't know.”

4

big up-front
architecture

& design
fail

because
of unknown
unknowns

There are things we do not
know we don't know.”

5

the future is
hard to predict!

6

what is software design?

Jack C. Reeves
fall 1992, c++ journal

http://www.developerdotstar.com/mag/articles/reeves_design.html

“what is software design?”

7

“The final goal of any
engineering activity is

some type of
documentation”

“When the design effort is
complete, the design

documentation is turned over to
the manufacturing team.”

8

manufacturing for
physical things

9

vs

10

software
manufacturing

compilation
11

design ==
complete source code

12

$$$software traditional
13

software designs are
relatively easy to turn out

Jack Reeves

“Given that

and essentially free to build,

an unsurprising revelation is
that software designs tend to be
incredibly large and complex.”

14

15

16

17

18

testing = engineering rigor in software

19

20

“Software may be
cheap to build,

but it is
incredibly

expensive to
design.”

Jack Reeves

21

architecture

design stuff that’s
hard to

change later

(as little
of that
stuff as
possible)

22

designdesign
emergent

23

Emergent, a.
[L. emergens, p. pr. of emergere.]

 1. Rising or emerging out of a fluid
 or anything that covers or
 conceals; issuing; coming to light.
 [1913 Webster]

 2. Suddenly appearing; arising
 unexpectedly; calling for
 prompt action; urgent.
 [1913 Webster]

24

finding abstractions
& patterns

25

domain

patterns describe effective abstractions

patternsidiomatic

technical

validation
security
transactional data

Patterns

business rules
shared functionality

26

last responsible
moment

finding & harvesting
idiomatic patterns

27

the longer you can
wait, the better

the decision

time

knowledge / context

28

Things that
Obscure
Emergent
Design

29

complexity

30

accidental
complexity
all the externally imposed
ways software becomes complex

essential
complexity
inherent complexity

VS

31

hunting
season

field level
security

EJB /
Biztalk

essential accidental

examples

32

technical
!! debt

33

technical debt

34

reckless prudent

deliberate

inadvertent

“We don’t have
time for design.”

“We must ship
now & deal with

the consequences.”

“What’s layering?”
“Now we know
how we should
have done it.”

http://martinfowler.com/bliki/TechnicalDebtQuadrant.html
35

you must convince someone technical
debt exists...
...start a conversation about
repayment

negotiating
repayment

demonstration >
36

cyclomatic complexity
measures complexity of a method/function

V(G)= e - n + 2
V(G) = cyclomatic complexity of G
e= # edges
n= # of nodes

ba
ck
gr
ou
nd
 i
nf
o

37

start

if (c1)

f1() f2()

if (c2)

f3() f4()

end

start

if (c1)

f1() f2()

if (c2)

f3() f4()

end

7

65

4

32

1

8

7

65

4

3

2

1

nodes

edges

ba
ck
gr
ou
nd
 i
nf
o

38

convincing
metrics

demonstration trumps
discussion

39

sample instance (http://nemo.sonarsource.org/)

open source

nice visualizations for common metrics

sonar

40

41

time machine
(struts)

42

time machine
(spring batch)

43

motion chart

44

rampant
genericness

45

increases software entropy

“if we build lots of layers
for extension, we can easily
build more onto it later”

generic obfuscation

accidental complexity

genericness

46

project time

technical debt

when you
add it

when you
start using it

47

Emergent
Design
Accelerators

48

atomic understanding of intent

more about design than testing

design will emerge from tests

less accidental complexity

better abstractions

test driven
design

49

perfect number
case study

∑ of the factors == number
(not including the number)

50

test-after, 1st pass

2

8

?

51

whole-number
square roots

52

53

54

########

##
#

#

#
#
#

?

55

test-after

TDD

56

refactoring
towards
design

57

58

idiomatic “unit
of work” pattern

see the composed method pattern
Smalltalk Best Practice Patterns Kent Beck

59

Refactoring to
Harvest
Idiomatic
Patterns

60

class

afferent
coupling

class

class

class class

class

class
1

2

3

6

5

4

ba
ck
gr
ou
nd
 i
nf
o

61

http://struts.apache.org/

62

UIBean evaluateParams()

63

evaluate.*Params ?

./org/apache/struts2/components/AbstractRemoteCallUIBean.java

./org/apache/struts2/components/Anchor.java

./org/apache/struts2/components/Autocompleter.java

./org/apache/struts2/components/Checkbox.java

./org/apache/struts2/components/ComboBox.java

./org/apache/struts2/components/DateTimePicker.java

./org/apache/struts2/components/Div.java

./org/apache/struts2/components/DoubleListUIBean.java

./org/apache/struts2/components/DoubleSelect.java

./org/apache/struts2/components/File.java

./org/apache/struts2/components/Form.java

./org/apache/struts2/components/FormButton.java

./org/apache/struts2/components/Head.java

./org/apache/struts2/components/InputTransferSelect.java

./org/apache/struts2/components/Label.java

./org/apache/struts2/components/ListUIBean.java

./org/apache/struts2/components/OptionTransferSelect.java

./org/apache/struts2/components/Password.java

./org/apache/struts2/components/Reset.java

./org/apache/struts2/components/Select.java

./org/apache/struts2/components/Submit.java

./org/apache/struts2/components/TabbedPanel.java

./org/apache/struts2/components/table/WebTable.java

./org/apache/struts2/components/TextArea.java

./org/apache/struts2/components/TextField.java

./org/apache/struts2/components/Token.java

./org/apache/struts2/components/Tree.java

./org/apache/struts2/components/UIBean.java

./org/apache/struts2/components/UpDownSelect.java

!
find . -name "*.java" | xargs grep -l "void evaluate.*Params"

64

extract the
embedded
framework

65

Capturing
 Idiomatic
 Patterns

66

APIs

67

idiomatic “unit
of work” pattern

68

Java

69

Groovy

70

Annotations

71

72

73

74

75

76

annotations add expressiveness
77

Sticky Annotations (Ruby)

78

limiting testing

79

conditional
method definition

80

annotation

81

using hook
methods

82

cross-cutting
concerns

83

84

Struts

Ruby on Rails

expressiveness matters!

85

...you want the most expressive
medium you can find

a lot!

if code == design...

push for expressiveness

frequently meta-language nature

expressiveness
matters

86

object-oriented

imperative

structured / modular

anti-objects

functional

abstraction
styles

87

collaborative
 diffusion

88

“The metaphor of objects can go
too far by making us try to
create objects that are too much
inspired by the real world. “

“...an antiobject is a kind of
object that appears to
essentially do the opposite of
what we generally think the
object should be doing.”

89

90

91

last responsible
moment

finding & harvesting
idiomatic patterns

92

last responsible moment

time

co
m

pl
ex

it
y

93

spikes are your
friends

94

case study
95

evolution
 of

asynchronous
messaging

96

progress bars &
async upload

backgrounDrb
http://backgroundrb.rubyforge.org/

97

progress bars

timed events

continually run

98

for simple message
queue backed by

database

99

switch to a real
messaging queue

(Starling)

100

project time

don’t know what we don’t know

“buy the fanciest one we
can” (just in case)

101

project time

technical debt

when you
add it

when you
start using it

102

project time

don’t know what we don’t know

“buy the fanciest one we
can” (just in case)

pay $$$ for technical debt…

…that you may never justify

103

messaging
infrastructure

messaging
infrastructure

convert architectural
elements to design

104

Summary
105

evolution &
emergence require
good engineering

practices

106

trying to predict the
future leads to over-

engineering
107

prefer pro/re-active
to

predictive

108

This work is licensed under the Creative Commons
Attribution-Share Alike 3.0 License.

http://creativecommons.org/licenses/by-sa/3.0/us/

?’s
please fill out the session evaluations

 NEAL FORD software architect / meme wrangler

 ThoughtWorks®

 nford@thoughtworks.com
 2002 Summit Boulevard, Atlanta, GA 30319
 www.nealford.com
 www.thoughtworks.com
 blog: memeagora.blogspot.com
 twitter: neal4d

109

