
Software Architecture
Fundamentals Workshop

Part 1: From Developer to Architect

Mark Richards
Independent Consultant
Hands-on Enterprise / Integration Architect
Published Author / Conference Speaker

http://www.wmrichards.com
http://www.linkedin.com/pub/mark-richards/0/121/5b9

agenda

nealford.com/katas/

Programmers know
the benefits of

everything and the
tradeoffs of nothing.

Architects must understand both.

software architecture?

“the highest level concept of a system in its
environment. The architecture of a software

system (at a given point in time) is its
organization or structure of significant

components interacting through interfaces,
those components being composed of
successively smaller components and

interfaces.”

Rational Unified Process definition, working off the IEEE definition

http://martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf

software architecture?

http://martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf

Architecture is the highest level
concept of the expert developers.

“In most successful software projects, the expert developers
working on that project have a shared understanding of the

system design. This shared understanding is called
‘architecture.’ This understanding includes how the system is
divided into components and how the components interact

through interfaces. These components are usually
composed of smaller components, but the architecture only
includes the components and interfaces that are understood

by all the developers.”

software architecture?

Architecture is about the important stuff.
Whatever that is.

http://martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf

Martin Fowler

developers product
owner

operations

soft skills

intern

jr. developer

developer

sr. developer

architect

hermit

cave dweller

loner

withdrawn

shy

technical skills

social skills

Don Juan

Decisions

what is an architecture decision?

architecture decisions

le
ve

l o
f d

iffi
cu

lty

implementation design architecture

architecture decisions

hard

moderate

easy

very hard

type of change

an architect is responsible for defining
the architecture and design principles
used to guide technology decisions

architecture decisions

architecture decisions

the decision to use java server faces
as your web framework

the decision to use a web-based user
interface for your application

vs.

architecture decisions

the decision that components should
be distributed remotely for better
scalability

the decision to use rest to communicate
between distributed components

vs.

justifying
 architecture decisions

 no one understands why a decision was made so it
keeps getting discussed over and over and over...

groundhog day anti-pattern

justifying decisions

the scenario

justifying decisions

internal
client

integration
hub

jms
destination

internal
application

internal jms
destination

internal
application

external

b2b integration
hub

the requirement: you need to federate the hub

justifying decisions

internal internal
application

b2b

external

integration
hub

jms
destination

the decision: dedicated broker instances?

justifying decisions

internal jms
destination

internal
application

b2b

external

integration
hub

the decision: centralized broker

justifying decisions

broker only used for hub access

low transaction volumes expected

application logic may be shared
between different types of client
applications (e.g., internal and
external)

identify the conditions and constraints

justifying decisions

conditions and constraints:

broker usage and purpose

overall message throughput

internal application coupling

analyze each option based on conditions

justifying decisions

considerations:

single point of failure

performance bottleneck

justification:
the internal applications should not have to know from which
broker instance the request came from.

only a single broker connection is needed, allowing for the
expansion of additional hub instances with no application changes.

due to low request volumes the performance bottleneck is not an
issue; single point of failure can be addressed through failover
nodes or clustering.

architecture decision:
centralized broker

justifying decisions

documenting and
communicating

 architecture decisions

Fred Flintstone

Fred Flintstone

Fred Flintstone
Fred Flintstone
Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone
Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone
Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone
Fred Flintstone

Fred Flintstone

Fred Flintstone
Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone

communicating decisions
email-driven architecture

 people forget, lose, or don't know an
architecture decision was made, and therefore

don't implement the architecture correctly

documenting your architecture decisions

document all of your architecture decisions in a
central document or wiki rather than multiple
files spread throughout a crowded shared drive

establish early on where your decisions will be
documented and make sure every team member
knows where to go to find them

communicating decisions

hold periodic whiteboard sessions with key
stakeholders that can then communicate your
decisions to others

for critical architecture decisions make sure the
right stakeholders know about the decision

communicating your architecture decisions

communicating decisions

https://github.com/stuarthalloway/presentations/wiki/Architectural-Briefings

Archeology

docs

current archeology

root for all
documents

interesting historical
artifactsuseful enough to update

pitfall

anti-pattern

A pitfall looks like a safe
path but immediately puts

you in danger.

architecture pitfall

witches brew architecture
architectures designed by groups resulting in a
complex mixture of ideas and no clear vision

the problem

"a simple spring-based
web app ought to be

enough here..."

"how about we
just start coding

the thing in java?"

"no, no, no, we need to
separate the layers using
standards like websphere

and ejb3."

"you're both wrong. obviously
a distributed architecture is

the only solution here."

the problem
great. i'm

working with a
bunch of egotistical

idiots...

hmmm, where
should i go for
lunch today?...

oh, and i suppose
'spring' solves world
hunger as well, huh?

these people are
about as useful as
a back pocket on

a shirt...

the goal

using collective knowledge and experience
to arrive at a unified vision for the

architecture

Architecture Patterns

Components vs Classes

Component Types

Hybrids & Variants

Scaffolding vs Design olding vs Design

traditional layered
architecture

microkernel
architecture

event-driven
architecture

Architecture Patterns

sacrificial
architecture

layered architecture

 presentation layer

 business layer

 persistence layer

 database layer

component component component

component component component

component component component

 presentation layer

 business layer

 persistence layer

 database layer

component component

component component

component component

component

component

component

layered architecture
request

layered architecture

 presentation layer

 business layer

 persistence layer

 database layer

component component component

component component component

component component component

separation of concerns

layered architecture

 presentation layer component component component

 business layer component component component

 persistence layer component component component

 database layer

layers of isolation

 database layer

 presentation layer component component component

 persistence layer component component component

 business layer component component component

 persistence layer component component component

 database layer

layered architecture

 presentation layer

 business layer

component component component

component component component

hybrids and variants

 services layer component component component

 persistence layer component component component

 database layer

layered architecture

 presentation layer

 business layer

component component component

component component component

hybrids and variants

 services layer component component component

layered architecture
considerations

 tends to lend itself towards monolithic
applications

 watch out for the architecture sinkhole
anti-pattern

 good general purpose architecture and a good
starting point for most systems

event-driven architecture

mediator topology broker topology

 event
queue

event-driven architecture

mediator
event

 event
channel

 event
channel

 event
channel

mediator topology

event

processor
event

module module

module module

processor
event

module module

module module

processor
event

module module

module module

processor
event

module module

module module

processor
event

module module

module module

 event
queue mediator

event

 event
channel

 event
channel

 event
channel

mediator topology

event

processor
event

module module

module module

processor
event

module module

module module

processor
event

module module

module module

processor
event

module module

module module

processor
event

module module

module module

event-driven architecture

process engine

adjustment
process

notification
process

quote
process

claims
process

customer
process

you move...

you
moved!

notify
insurednotify

insured

change
address

recalc
quote

update
claims

adjust
claimschange

address
recalc
quote

update
claims

adjust
claims

event-driven architecture

 event
channel

 event
channel

 event
channel

broker topology

event processor
event

module module

module module

processor
event

module module

module module

processor
event

module module

module module

processor
event

module module

module module

processor
event

module module

module module

event-driven architecture

you move...
customer process

notification process adjustment process

quote process claims process

you
moved!

change
address

recalc
quote

update
claims

change
address

update
claims

event-driven architecture

considerations
 contract creation, maintenance,

and versioning can be difficult

 must address remote process
availability or unresponsiveness

 reconnection logic on server restart
or failure must be addressed

event-driven architecture

microkernel architecture

plug-in
component

plug-in
component

plug-in
component

plug-in
component

plug-in
component

plug-in
component

core
system

(a.k.a. plug-in architecture pattern)

microkernel architecture

plug-in
module

core
system

architectural components

minimal functionality to run system
general business rules and logic
no custom processing

standalone independent module
specific additional rules or logic

microkernel architecture

claims processing

MA
module

NY
module

CA
module

GA
module

NH
module

TX
module

NY
module

microkernel architecture

plug-in
component 1

plug-in
component 2

plug-in
component 3

plug-in
component 4

core system

registry
registry

1: <location>, <contract>
2: <location>, <contract>
3: <location>, <contract>
4: <location>, <contract>

microkernel architecture

considerations

 can be embedded or used as part of
another pattern

 great pattern for product-based
applications

 great support for evolutionary design
and incremental development

microkernel architecture

sacrificial architecture

http://martinfowler.com/bliki/SacrificialArchitecture.html

architecture pitfall

architecture by implication
systems lacking a clear documented architecture

architecture by implication

 remember that agile methodologies are not a
substitute for creating an architecture

Technical Writing Skills

Software is more about
communication than

technology.

Know Your Audience

practical
vs.

classic style

passive voice

 Passive voice occurs when you make the
object of an action into the subject of a
sentence.

 Why was the road crossed by the chicken?

examples
The metropolis has been scorched by the
dragon's fiery breath.
The dragon scorched the metropolis with
his fiery breath.

After suitors invaded her house, Penelope
had to think of ways to delay her
remarriage.

When her house was invaded, Penelope
had to think of ways to delay her
remarriage.

passive voice myths
 1. Use of the passive voice constitutes a grammatical
error.

 2. Any use of "to be" (in any form) constitutes the
passive voice.

 3. The passive voice always avoids the first person.

 4. You should never use the passive voice.

 5. I can rely on my grammar checker to catch the
passive voice.

more examples

Researchers have concluded that heart disease
is the leading cause of death in the United
States.

Heart disease is considered the leading cause
of death in the United States.

Research points to heart disease as the leading
cause of death in the United States.

The surgeon positions the balloon in an area of
blockage and inflates it.

The balloon is positioned in an area of
blockage and is inflated.

“swindles & perversions”

use of language shapes clarity and
meaning

Mistakes were made.

 The Exxon Company accepts that a few
gallons might have been spilled.

some people use the passive voice to
avoid mentioning responsibility for certain
actions

it’s common
Your phone will join known

networks automatically.

Your phone automatically
joins known networks.

If no known networks are
available, you must

manually select a network.

the most important rule:

revise!

 all important documentation

 proposals

 emails !

 all written correspondence

revise!

technical writing

 simple, declarative sentences

 draft & rewrite

 …and rewrite and rewrite and rewrite…

 spell check!

 have someone else read it for clarity

Architecture Anti-pattern

big bang architecture
designing the entire architecture at the beginning of
the project when you know least about the system

big bang architecture

 only architect what is absolutely necessary to get the
project started and on the right track

 let the architecture evolve throughout the project as
you discover and learn more about the system

 don't forget - requirements, technology, and business
needs change constantly - and so must the architecture

Continuous Delivery

continuous delivery ∩ architect

Manage
coupling intelligently.

Architecture is abstract
until operationalized

Expanding role
of architect.Understanding

shifting structure.

Mature engineering
practices.

agile 101

Iteration 0 1 2 3 4

Analysis + Design

Development

Testing + Showcase

Integration + QA Release and operation

Customer

Centralized QA IT Operations

"Agile" team

The "last mile"

continuous delivery

Iteration 0 1 2 3 4

Analysis + Design

Development

Testing + Showcase

Integration + QA Release and operation

Customer

Centralized QA IT Operations

"Agile" team

The "last mile"

Customer

Delivery team
Constant flow of new features into production always

production
readybusiness needs > operational constraints

Continuous Integration

Fast, automated feedback
on the correctness of your

application every time there
is a change to code

Deployment Pipeline

Fast, automated feedback
on the production readiness

of your application every
time there is a change — to

code, infrastructure, or
configuration

90

production readiness

code infrastructure
configuration

Deployment Pipelines

92

Artifact repository

Source
code

Commit stage

Compile
Commit tests

Assemble
Code analysis

reports
binaries
metadata

Acceptance stage

Configure environment
Deploy binaries

Smoke test
Acceptance tests

Capacity stage

Configure environment
Deploy binaries

Smoke test
Run capacity tests

UAT

Configure environment
Deploy binaries

Smoke test

Env &
app

config

reports
metadatabinaries

Production

Configure environment
Deploy binaries

Smoke test

Env &
app

config

binaries
reports
metadata

Operations
perform

push-button
releases

Testers
Self-service
deploymentsDevelopers

See code metrics
and test failures

Version control

Complected Deployments

complect, transitive verb:
intertwine, embrace, especially

to plait together production

!

Evolutionary Architecture

production

Components are
deployed.

Features are released.

Applications consist
of routing.

Evolutionary Architecture

production

architecture pitfall

“accidental” architect

role versus title

architecture types

architecture types

application

integration

enterprise

Integration Architecture

coordination

communication

challenges

your
internal app

jms

ftprestjms

open
internal app

database

closed
internal app

soap

closed
external app

jms soapdatabase

rest

en.wikipedia.org/wiki/Fallacies_of_distributed_computing

 1 The network is reliable.
 2 Latency is zero.
 3 Bandwidth is infinite.
 4 The network is secure.
 5 Topology doesn't change.
 6 There is one administrator.
 7 Transport cost is zero.
 8 The network is homogeneous.

integration styles
From Enterprise Integration Patterns by Hohpe and Woolf

file transfer shared database

remote procedure
invocation

messaging

file transfer

file-based processing is expensive, error
processing, timeliness of data synchronization,
data-only transfer

universal integration style, integration
simplicity, system decoupling and system
abstraction

shared database

near-universal integration via SQL, system
abstraction, system decoupling

cannot use persistence caching (ORM),
performance bottleneck issues, schema change
issues, data ownership issues

expand/contract pattern

app v230
compatible with db

v14

DB
version

15

DB
version

14

app v205
compatible with db

v13 and v14

app v234
compatible with db

v14

app v241
compatible with db

v14 and 15

DB
version

13

app v248
compatible with db

v15

Time

app v205
deployed

migrate
db to v14

app v230
deployed

app v234
deployed

app v234
deployed

app v248
deployed

migrate
db to v15

remote procedure

data encapsulation and ownership, external
systems integration via web services, mature
frameworks and tools

tight system coupling due to dependency on
service availability and location knowledge, poor
asynchronous communications

messaging

asynchronous and reliable messaging, highly
decoupled systems, excellent scalability
capabilities, monitoring

external integration beyond firewall,
implementation and testing complexity, cross
platform standards still evolving

Messaging Models

which is the best integration style?

file transfer shared database

remote procedure invocation messaging

?

Architecture Anti-pattern

cover your assets
continuing to document and present alternatives

without ever making an architecture decision

cover your assets

"the layered architecture
approach would work here..."

cover your assets

"but of course, there's always
EDA, which would also be a fit..."

cover your assets

"space-based architecture has
always been a safe choice in these

situations..."

cover your assets

"but then again, the microkernel
pattern has some real selling points

here...

cover your assets

it's your job as an architect to present
alternatives, clearly articulate the pros and

cons of each, and recommend the best
solution for the situation

wait, I think there are
about 25 more patterns

we can analyze...

Enterprise Architecture

Enterprise Architecture

enterprise architecture context

Business Needs

Business Strategy and Operating Model

IT Capabilities

Business Operations and IT Systems & Infrastructure

Enterprise Architecture

EA Governance
Program / ARB

Business and IT
Capabilities Model

Guiding Architecture
Principles & Standards

Business Strategy and Operating Model

Business Operations and IT Systems & Infrastructure

Enterprise Technical
Architecture

St
ra

te
gy

Pl
an

nin
g

an
d

De
sig

n
Ex

ec
ut

io
n

Fe
ed

ba
ck

 Lo
op

- Technology Plan and Roadmap
- Future State Architecture
- Architecture Models
- Transition Plan
- Prioritization Model and Plan

Business
Architecture

- Component Models

enterprise architecture context

from developer to architect

Introduction to JMSAgenda

stuff you know

stuff you know
you don’t know

stuff you don’t know
you don’t know

the knowledge triangle

focus here!

technical breadth

stuff you have to maintain

technical
depth

nealford.com

@neal4d

nealford.com/books

nealford.com/videos

www.oreilly.com/software-architecture-video-training-series.html

