Software Architecture
Fundamentals Worksho

Part 2: A Deeper Dive

Mark Richards

Independent Consultant
Hands-on Enterprise / Integration Architec
Published Author / Conference Speaker

ThoughtWorks:

http://www.wmrichards.com
http://www.linkedin.com/pub/mark-richards/0/121/5b9

NEAL FORD

7=
P

Software Architecture Enterprise

waene N, Qo W evepse 1{161\ Director / Software Architect / Meme Wrangler

MESEEE Service

art 2: .
Understandingthe Basics [l Taking a Deeper Dive Jll With JMS

Neal Ford & Mark Richards [l Neal Ford & Mark Richards @l Mark Richards Mark Richards
VIDEO VIDEO VIDEO VIDEO

O'REILLY" O'REILLY"

O'REILLY" OREILLY" O'REILLY

Software
Architecture
Fundamentals:
Part1:
Understanding
the Basics

Neal Ford, Mark Richards

VIDEO

Software
Architecture
Fundamentals:
Part 2:

Takinga

Deeper Dive

Neal Ford, Mark Richards

VIDEO

Software
Architecture
Fundamentals
Part3

Soft Skills: Problem Solving,
Decision Making, Refactoring,
Productivity, & Communications

Neal Ford, Mark Richards
VIDEO

Software
Architecture
Fundamentals
Part4

Soft Skills: Leadership, Negotiation,
Meetings, Working with People,
&Building a Tech Radar

Neal Ford, Mark Richards

VIDEO

Software
Architecture
Fundamentals
Service-Based
Architectures
Structure, Engineering
Practices, and Migration
Neal Ford, Mark Richards

VIDEO

Presentations Biography Books Video
nealford.com &
Abstracts

al Katas

inspired by Ted Neward's original Architectural Katas

"How do we get great designers?
ign,

s design

Fred Brooks

"So how are we supposed
to get great architects, if
they only get the chance
to architect fewer than
a half-dozen times in
their career?

Ted Neward

About

Architectural Katas are intended as a small-group (3-5 people) exercise, usually as part of a larger group (4-10 groups are ideal), each
of whom is doing a different kata. A Moderator keeps track of time, assigns Katas (or allows this website to choose one randomly),
and acts as the facilitator for the exercise.

The Architectural Katas started as a presentation workshop by Ted Neward. They've taken on a life of their own. Learn more »

Rules

Doing an Architectural Kata requires you to obey a few rules in order to get the maximum out of the activity. Read Rules »

Lead

Want to run the Architectural Katas yourself? There's only a few things you need to know before you do. Ted Neward, the originator of
Architectural Katas, has information on his site about leading Katas exercises. Read on the original site »

List Katas »

Random Kata »

e

Follow Neal on Twitter at @neal4d

Neal works at ThoughtWorks, a very interesting place.
Neal speaks freq

Meme Agora RS feed.

.

Software architecture

reflects the mapping

bebweewn capabilities
and cownskrainks,

translating requirements

2,

translating requirements

“our business is constantly changing
to meet new demands of the
marketplace”

translating requirements

“due to new regulatory requirements,
it is imperative that we complete end-
of-day processing in time”

translating requirements

"we need faster time to market to
remain competitive”

translating requirements

“our plan is to engage heavily in
mergers and acquisitions in the next
three years”

translating requirements

“we have a very tight timeframe and
budget for this project”

architecture pittall

) _{
il

armchair architecture

whiteboard sketches are handed off as final architecture
standards without proving out the design

i ¥ m e | esesttereessessectsr

armchair architecture

occurs when you have non-
coding architects

occurs when architects are not
involved in the full project
lifecycle

occurs when architects don't
know what they are doing

architecting for change

architecting for change

business is in a constant state of change

: =« |
increased /"' ~ regulatory
competition ‘" changes

Wy

mergers growth

acquisitions

architecting for change

technology is in a constant state of change

platforms FJ N products
A

Wy

languages patterns

frameworks

techniques for change

—
| SR—
nnnnnnnnn B Component D

reduce dependencies

!
1= 1

application application
3 4

create product-agnostic
architectures

SOAP FlXerorocar.

<?2xml?>

FpML

Financial products Markup Language

leverage standards

create domain-specific
architectures

reduce dependencies

A A \ /
—
% —
 Z / / \

|lessdaghelireatideyao guivic (edeqrentingdiles)

reduce dependencies

A A \ /
—
% —
 Z / / \

messaging service bus adapters

architecture patterns

leverage standards

industry standards

IE%) snAP FIXPROTOCOL

INDUSTRY-DRIVEN MESSAGING STANDARD*"

FoML

Financial products Markup Language

leverage standards

corporate standards

4P
& — > |2EE

= ORACLE

Microsoft

leverage standards

standards may not always be your
first choice, but they significantly help
in reducing the effort for change

larger resource pool

better integration with other systems

product-agnostic architecture

isolate products to avoid vendor lock-in

application application
1 2
application application
1 2 S—
!
major vendor product % major vendor product
application application
3 4

!

1= e
! !
3 4

domain-specific architecture

limit the scope of the architecture by taking
into account drivers, requirements,
business direction, and industry trends

domain-specific architecture

business
requirements
business } E industry
goals trends
business
direction

Architecture Anti-pattern

An antipattern is a solution
that that initially looks like
an attractive road lined
with flowers...

& ¥ ¥ |

...but further on leads you into
a maze filled with monsters

vendor King

product-dependent architectures leading to a loss
of control of architecture and development costs

vendor King

vendor King

vendor King
vendor app as

a service

(More) Architecture Patterns

space-based microservices service-based
architecture architecture architectures

space-based architecture

let's talk about scalability for a moment...

ma Web server
md Web server md 3pp server

md Web server md 2PD server
4 3 Y \.\»
\\“\\?, e md Web server g PP server i
-
md Web server md 2pPp server
md Web server md 2pPp server
—>

web server

space-based architecture

processing unit processing unit processing unit

virtualized middleware

messaging
grid

processing = deployment
grid manager

data grid

space-based architecture

processing unit

processing unit

module module module

EEEEEEEEEN
in memory data

data replication engine

space-based architecture

middleware

messaging
grid

data grid

processing
grid

deployment
manager

space-based architecture

middleware

manages input request and session
grid

space-based architecture

middleware

manages data replication between
processing units

virtualized middleware

data grid

space-based architecture

middleware

manages distributed
request processing

processing
grid

space-based architecture

middleware

manages dynamic processing unit
deployment

deployment
manager

space-based architecture

it's all about variable scalability... processing unit i processing unit

good for applications that have T E— —

variable load or inconsistent peak

virtualized middleware

times

not a good fit for traditional large-scale relational
database systems

relatively complex and expensive pattern to implement

service-oriented architecture

business services BS BS BS BS BS

message bus

process choreographer

service orchestrator

enterprise services ES = = ES ES

application services As infrastructure services 15

service-oriented architecture

business services BS BS BS BS BS BS

abstract enterprise-level coarse-grained services
owned and defined by business users

no implementation - only name, input, and output
data represented as wsdl, bpel, xml, etc.

service-oriented architecture

concrete enterprise-level coarse-grained services
owned by shared services teams

custom or vendor implementations that are one-to-one
or one-to-many relationship with business services

enterprise services

CreateCustomer CalcQuote ValidateTrade

service-oriented architecture

concrete application-level fine-grained services
owned by application teams

bound to a specific application context

AddDriver UpdateAddress CalcSalesTax

service-oriented architecture

concrete enterprise-level fine-grained services owned
by infrastructure or shared services teams

implements non-business functionality to support both
enterprise and business services

WriteAudit CheckUserAccess

service-oriented architecture

message bus

process choreographer

service orchestrator

mediation and routing message enhancement
process choreography message transformation

service orchestration protocol transformation

service-oriented architecture

CreateQuote

message bus

CreateCustomer CalcQuote

message bus message bus

AddDriver AddVehicle CheckDMV

message bus

WriteAudit

microservices architecture

client requests client requests client requests

api layer

service
component

module

module

service
component

module

module

service
component

module

module

service
component

module

module

service
component

module

module

service
component

module

module

service
component

module

module

service
component

module

module

microservices architecture

separately deployed components

client requests client requests client requests

service j service ¥ service service service service service \ service
component | §§ component t { component component | }{§ component || component | '8 component 1] component

module) module module | module | module | module module module

13 1 | iy i | |
module | module | module ! module L module ir module i module ! module

microservices architecture

service component

client requests client requests client requests

api layer

service service service service service service service service
component component component i & component component component component component

module module module module | module module module module

i
module module module } module i module module module module

microservices architecture

bounded context

client requests

service service service
component component component

module module module

module module module

client requests

api layer

service i service
component component

module module

module module

client requests

service service service
component component component

module module module

module module module

microservices architecture

service orchestration

client requests client requests client requests

api layer

service
component

module

module

service
component

module

module

service
compor ent

module

module

service
component

module

module

s arvice
corponent

110dule

module

service
component

module

module

microservices architecture

service orchestration

client requests client requests client requests

api layer

write audit

Create cust

module

module

calc quote

module

module

add driver
module

module

add vehicle

module

module

check DMV

module

module

inventory

module

module

logistics

module

module

COQRS

Query Model

‘ Command Model

<—F=<—.

User Interface

http.//codebetter.com/gregyoung/2010/02/16/cqrs-task-based-uis-event-sourcing-agh/

service provides
model reads from information for the

database presentation

user makes a
change in the Ul

change forwarded to

model
model updates
database model executes
validation, and
consequential logic

traditional

query services update
presentations from
query model query model

reads from
database
ice
Interfaces

’_> 000 .,

user makes a

\ *hange in the Ul

application routes
change information
to command model

command model
updates database

command model
executes valigations, and
consequential logic

C QIS Command Query Responsibility Separation

CORS natural fits

task-based user interface
meshes well with event sourcing

eventual consistency

eventual consistency

0606 Ily Consistent - Revisited - All Things Distributed ¥

L2)(2](2) (0] [+]@ wwamnasosies.con

All Things Distributed

Al Things Distouted “Building reliable
S ————— istributed systems at
a worldwide scale

1 wrote a first version of this posting on consistency models about a year ago, but | was never happy with
it as it was written in haste and the topic is important enough to receive a more thorough treatment. ACM
Queue asked me to revise it for use in their magazine and | took the opportunity to improve the article.
This is that new version.

Consistent - reliable distributed ata scale trade-
offs between consistency and availability.

At the foundation of Amazon's cloud computing are infrastructure services such as Amazon's S3 (Simple
Storage Service), SimpleDB, and EC2 (Elastic Compute Cloud) that provide the resources for
constructing Internet-scale computing platforms and a great variety of applications. The requirements
placed on these infrastructure services are very strict; they need to score high marks in the areas of Contact Info

security, scalability, availability, performance, and cost effectiveness, and they need to meet these Werner Yogols

requirements while serving millions of customers around the globe, continuously. CTO - Amazon.com e r r I a r ‘ S r a e — O S
Under the covers these services are massive distributed systems that operate on a woridwide scale. This
scale creates additional challenges, because when a system processes trillions and trillions of requests,

events that normally have a low probability of occurrence are now guaranteed to happen and need to be Other places
accounted for up front in the design and architecture of the system. Given the worldwide scope of these

(]
. - Follow werner on twitter if 1t 1
e e etween consistenc
availability. Although replication brings us closer to our goals, it cannot achieve them in a perfectly thinking about.

transparent manner; under a number of conditions the customers of these services will be confronted At wemerly he posts material that

with the consequences of using replication techniques inside the services. doesn't belong on this blog or on
twitter.

werner@allthingsdistributed.com

One of the ways in which this manifests itself is in the type of data consistency that is provided,

° ° ° I ’
particularly when the underlying distributed system provides an eventual consistency model for data Syndication
1. When desi these larg le systems at Amazon, we use a set of guiding principles and) Subscribe 1o this weblog's °
ions related to larg le data replication and focus on the trade-offs between high availability atom feed or rss feed
and data consistency. In this article | present some of the relevant background that has informed our

http://www.allthingsdistributed.com/2008/12/eventually consistent.htm|

CORS natural fits

task-based user interface

meshes well with event sourcing

consistency or availability

eventual consistency ((but never both)

|

|

|
.

\

W,

complex or granular domains

LMAX

http://martinfowler.com/articles/Imax.html

JVM-based retail financial trading
platform

centers on Business Logic Processor

handling 6,000,000 orders/sec on 1
thread

surrounded by Disruptors, network of
lock-less queues

overall structure

8 B

Input Output
Disruptor Disruptor
u
/
4 | * — N

— single-threaded Java app
— relies only on JVM

— easy to test
\ _ f y

Business

business logic processor

In-memory
event sourcing via input disruptor

snapshots (full restart—JVM + snapshots
— less than 1 min)

multiple instances running

each event processed by multiple
processors but only one result used

input/output disruptors

Journal

-l Replicate

Un- |
marshall

Business
Logic

Receive

® Message

disruptors

custom concurrency component

multi-cast graph of queues where
producers enqueue objects and
consumers dequeue in parallel

ring buffer with sequence counters

20x10°¢ slots for input buffer
4x10° slots for output buffer

.
LD

Input

Disruptor
- o)
‘ Rep.

U Ars
|

Output
Disruptor

“mechanical sympathy”

started with transactions
switched to Actor-based concurrency

hypothesized & measured results

CPU caching is key ™ single writer
principle

“One ring to rule them all...”

no architecture fits every circumstance

evaluate good, bad, and ugly

watch for primrose paths that turn ugly

embrace pragmatism

what’s your day job?

building wicked cool architectures is an
stimulating, rewarding intellectual
challenge...

...building CRUD applications isn't

coolness sometimes equals accidental
complexity

architecture pittall

) _{
il

tecture

der web archi

Spi

creat

ing large numbers of web services that

just because you can

are never used

spider web architecture

SOAP SOAP SOAP SUAP SOAP

SOAP SOAP SOAP SOAP
SOAP| SOAP SOAp SOAP

SOAP SOAP SOAP SOAP

SOAP SOAP SOAP SOAP
SOAP SOAP SOAP SOAP SOAP SOAP

SOAP S0AP S0P
- = SIAP [SOAP Sup SIAP SOAP

SOAP SIAP SOAP
S0P SOAP

SOAP gy

- SOAP soap SOAF SOAP SOAP

SOAP SOAP SOAP SOAP SOAP

SOAP
SOAH ap TP somp SOAP

application interface layer

service | service | service | service | service | service | service | service

spider web architecture

just because you can create a
web service at the click of a

button doesn't mean you
should!

let the requirements and
business needs drive what
services should be exposed

X

Meeting Hacks

'

makers vs. managers

0O < tJ O)

paulgraham.com ¢ t m] o »
I+

I

Since most powerful people

MAKER’S SCHEDULE, MANAGER’S SCHEDULE

operate on the manager's

July 2009

One reason programmers dislike meetings so much is that they" SCh edUIe, th ey'l’e Iﬂ a pOSItIOﬂ '['O
Responses on a different type of schedule from other people. Meetings cos. .

them more. make everyone resonate at their

There are two types of schedule, which I'll call the manager's .

schedule and the maker's schedule. The manager's schedule is

bosses. It's embodied in the traditional appointment book, with frequency If th ey Want to BUt
each day cut into one hour intervals. You can block off several

hours for a single task if you need to, but by default you chang¢ 't_'h e Smarter ones restra In
Twitter what you're doing every hour.
Seaich When you use time that way, it's merely a practical problem to th emselves, If th ey /(ﬂOW that

meet with someone. Find an open slot in your schedule, book
them, and you're done.

some of the people working for
Most powerful people are on the manager's schedule. It's the
schedule of command. But there's another way of using time th em need Iong Ch unks Of tlme

that's common among people who make things, like programmr
and writers. They generally prefer to use time in units of half a .
day at least. You can't write or program well in units of an hour. . to woO rI(N

.

www.paulgraham.com/makersschedule.html

imposed upon

o

meetings...

*s B8R imposedby

AR

" ({‘;‘Q imposed meetings

=
E stick to the agenda

:: *take one (or many) for the team

»
= know the dramatis personae

don’t ask important questions
you don't already know the answer to

ting imagery

don’t improvise white board
drawings in important meetings

imposed upon

o

meetings...

*s B8R imposedby

AR

imposed by

‘ dont !

N & 7 is this more important than the work

s "« Yyou are pulling people away from?

-
= setanagenda

/ have someone take lightweight notes .

specialized meetings

—keep it short

—keep it relevant ‘ ‘

—everyone
—too many?
—geographical

—police inappro

‘ stand-up u

<role>-huddle

BA-huddle

dev-huddle

SA4

y dispersed?
oriate levels of interaction

Architecture Refactoring
Techniques

architecture retactoring

:=‘S£ E.«e. —;..:_, t] 8 WH iWhenwn hy
gss=) @ L H
O O T

mmmmm

determine the determine what create a business
architectural root architecture case justifying the
cause of each issue changes are needed changes

S—
EeEEEg

"'F"‘ = e
S=== ===
Jg ==
present your case and create a timeline develop a high-level
plan to the business for containing estimates architecture

approval and funding and resources refactoring plan

determine root cause

application builds fail almost every time something

is committed to the repository

application components are too tightly coupled and
dependent on one another

application components do not have the right level

of granularity and isolation from a roles and
responsibility standpoint

determine root cause

e
Asynehvenous

every time the application is deployed with new

functionality, something else usually breaks

application components are too tightly coupled and
dependent on one another

application components do not have the right level
of granularity and isolation from a roles and
responsibility standpoint

determine root cause

application deployments take a long time,

sometimes lasting up to 25 minutes

== the application is a monolithic and growing quickly

= St based on new features and functionality; it is getting
= s too large for a single application.

determine root cause

users are increasingly reporting performance issues

with the application

2= the application is becoming too large; it is consuming

i =" about 95% of the available jym resources during
S== =
= mim normal load (memory, cpu, threads)

determine root cause

root cause summary

the application is too tightly coupled and
is growing beyond what the current
architecture can support

determine architecture
changes

the monolithic split the application into
application is too tightly multiple deployable units,
coupled and is growing thereby decoupling
beyond what the current components and allowing

architecture can support for more growth potential

justitying your case
technical justification

split the monolithic application into multiple deployable

units, thereby decoupling components and allowing for
more growth potential

;_.....,....

gJ := components will be more decoupled, thereby eliminating
..... frequent build issues

.......
Nawbiodkng

Q&L%%ﬂ;ﬁ each part will use fewer jvm resources, thereby increasing
performance and allow for more growth

s ZHki== deployment is limited to a separate application unit, thereby
reducing deployment time and increasing robustness

mmmmmm
e

justitying your case
business justification

1 (o split the monolithic application into multiple deployable
(units, thereby decoupling components and allowing for
more growth potential

new functionality can be delivered faster, thereby improving
overall time to market

overall application quality will be improved, thereby reducing
bugs and the associated costs of fixing them

development and deployment costs associated with
developing new functionality will be significantly reduced

refactoring techniques

work in small iterations

identify the technical and business
value expected at each iteration

use a playbook approach to outline
the architecture transformations

decide on migration vs. adaptation
(or a combination of both)

refactoring techniques
playbook approach

each iteration should clearly illustrate the changes to the

architecture each step along the way

current state iteration 1 iteration 2 iteration 3

refactoring techniques
playbook approach

user interface layer

current state iteration 1 iteration 2 iteration 3

keep iterations as small as possible while still providing
enough technical and business value

refactoring techniques

migration vs. adaptation

migration
the replacement of old components
with new ones through migration

over time
-
2 3| 3
| | 3t (new) |
 (replace) i -) |

refactoring techniques

migration vs. adaptation

migration

easier to rollback changes

less overall risk

2 T3 o3 requires switching logic in calling
(replace) §

—3 |
> components

refactoring techniques

migration vs. adaptation

adaptation

cl
- (keep) refactoring of existing components

into new functionality

c2
| (refactor)

refactoring techniques

migration vs. adaptation

adaptation

cl
- (keep) 1} refactor vs. replacement

harder to rollback changes

2 no changes to calling components
- (refactor) ;

presenting your case

presenting your case

CAUTION

-

"how did things get this bad in the
first place?"

presenting your case

always present your plan to your immediate
manager before going to the business

presenting your case

don't scare people -
"present with urgency, not with panic”

presenting your case

although you may know all the answers, don't be
argumentative - take this as an opportunity to
educate the business instead

Architecture Anti-pattern

An antipattern is a solution
that that initially looks like
an attractive road lined
with flowers...

& ¥ ¥ |

...but further on leads you into
a maze filled with monsters

Imposter Syndrome

a term coined in the 1970s by psychologists and
researchers to informally describe people who are
unable to internalize their accomplishments

i

architecture

boundaries

architectural boundaries

there is an art to defining the box
that development teams can work
in to implement the architecture

architectural boundaries

tight boundaries

A

architectural boundaries

loose boundaries

?

architectural boundaries

appropriate boundaries

architect personalities

control freak architect

architect personalities

i ' im — reetttttaatesreatet

armchair architect

architect personalities

r

\ .
_)
vV | v
o Vi i
\ A
| .. N ¢
P \ i | '
.

effective architect

controlling the boundaries

the architect defines the architecture
and design principles used to(guide
technology decisions

(" Losd conkguriion)
Lawrch werbers

controllmg the boundaries
controlling the layered stack

development team: we decided to incorporate the guava
library for the camel case conversion requirement.

"take it out. | only want you to use the core
java api for this application. period."

controlling the boundaries
controlling the layered stack

development team: we decided to incorporate the guava
library for the camel case conversion requirement.

L —1
T T—

"guava - that's a cool library name. carry on..."

controllmg the boundaries
controlling the layered stack

development team: we decided to incorporate the guava
library for the camel case conversion requirement.

if that's the only feature you are leveraging, you should
just use the java api. if there are other features you can
justify, then we can talk about it.

controllmg the boundaries

controlling the layered stack

... what design principle would you create to
" 5544 manage this type of boundary?

.....
»»»»»

look for overlaps in existing functionality

always seek justification for adding a new library

provide guidance by making it clear what type of libraries
need discussion and approval and which ones don't

controllmg the boundaries
controlling the layered stack

loose
boundaries

special l

purpose

architect
approval

T
general purpose

architect
decision

framework e

controlling the boundaries
pattern governance

development team: we need better performance - can we
access the database directly from the presentation layer?

presentation Iayer component component

bUSineSS Iayer component component

perSiStence Iayer component component

database layer

controlling the boundaries
pattern governance

development team: we need better performance - can we
access the database directly from the presentation layer?

presentation Iayer component component

database layer

controlling the boundaries

pattern governance

development team: we need better performance - can we
access the database directly from the presentation layer?

controlling the boundaries

pattern governance

development team: we need better performance - can we
access the database directly from the presentation layer?

L]
T T—

"it doesn't matter to me. if you think it would
help performance, then go for it."

controlling the boundaries

pattern governance

development team: we need better performance - can we
access the database directly from the presentation layer?

"those layers are closed so that we can better control
change through layer isolation, so no. have you been able
to identify what might be causing the performance issues?"

controlling the boundaries
pattern governance

.= What design principle would you create to

-
- Worker| Worker] 2T [server
=t ,%Ekw e
= | = e
—

il

presentation layer
business layer

services layer

persistence layel

database layer

component

component

component

component

component

component

component

component

- manage this type of boundary?

component

component

component

component

CLOSED

CLOSED

CLOSED

CLOSED

controlling the boundaries
pattern governance

what design principle would you create to
manage this type of boundary?

clearly document and diagram the architecture

justify your reasons for the architecture decisions

make sure you effectively communicate your decisions

controlling the boundaries

architecture scope

development team: we added some really cool capabilities
that might be needed sometime in the future...

"did i tell you to add those capabilities? didn't
think so. take them out."

controlling the boundaries

architecture scope

development team: we added some really cool capabilities
that might be needed sometime in the future...

R —
T T—

"great forward thinking Quys! someday the users might
need that capability, and now we have it ready..."

controlling the boundaries

architecture scope

development team: we added some really cool capabilities
that might be needed sometime in the future...

"let's verify those features with the analysts to see if we
need them. if not then we'll take them out. we just need to
make sure we don't do anything to prevent that capability

from being added in the future."

controlling the boundaries

architecture scope

what design principle would you create to
manage this type of boundary?

adding additional features over and above the requirements adds
additional development, testing, and maintenance time and costs

this practice can lead to the infinity architecture anti-pattern

document non-required features, verify it with the user community,
and make sure you don't do anything to restrict that functionality
in the future

Architecture Anti-pattern

An antipattern is a solution
that that initially looks like
an attractive road lined
with flowers...

& ¥ ¥ |

...but further on leads you into
a maze filled with monsters

Y&s&erdaj’s best practice

s Fomorrow’s am&impa&%erw

P, A N PSS S PP OIS L. SIS DONEI, YO ICIL S JURNEIE I SN PTP- SCOSR . -

A Case against the GO TO Statement.

by Edsger W.Dijkstra
Technological University

Eindhoven, The Netherlands

Since a number of years I am familiar with the observation that the
quality of programmers is a decreasing function of the density of go to
statements in the programs they produce. Later I discovered why the use of
the go to statement has such disastrous effects and did I become convinced
7 ' that the go to statement should be abolished from all "higher level"

? programﬁing languages (i.e. everything except -perhaps- plain machine code),
f' . At that time I did not attach too much importance to this discovery; I now
y tﬁ:E; submit my considerations for publication because in very recent discussions
} in which the subject turmed up, I have been urged to do so.
DA PRy
My first remark is that, although the programmer's activity ends when
he has constructed a correct program, the process taking place under control
of his program is the true subject matter of his activity, for it is this
process that has to effectuate the desired effect, it is this process that

in its dynamic behaviour has to satisfy the desired specifications. Yet,

once the program has been made, the "making" of the corresponding process is

.delagated to the machine. .

www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF

. APl

. AP

Other Other
L o8 J L DB J L SQL Server Databases

DB-Library ESQLforC —

e ——

11990

ODBC

I

-y

Vadous

1992

it [mauc)

J Erﬁ%ﬁ“’ﬁ%& 73 J -

API
‘x‘

Various
Stores

Various
Stores

—
ODBC :D'J ' I ’] 9 9 6
| API DB-Library ESQL for C

Various
Stores

J L SQL Server Databases J

2002 L@QEiQJ J

(Lowos) (_oosc)
Various Various :
[Stores J [Stm J [SQL Server Databases J
5 , & g l @ B a ‘;
. es Qr & s UNQto Entities o= Entity
" arn ' Framework
‘(_/ UNQto DataSet Pt Do oy
UNQto SQL o~

bs %O merQM ﬁ ‘ L ADO..NET:J_'t
—_—

L g
JMJUM\.‘; I SO, G LI R N 6:
I2007 &) | CONETS \
LS:; J L;}E J [\::":J L‘;;;':J L SQL Server Databases J

UNQto XML

2008

Y&s&erdaj’s best practice

s Fomorrow M%&mp&%%erwf
)
<

ENTERPRISE
Java Beans

An antipattern is a solution that
initially looks like an attractive
road lined with flowers...

& ¥ ¥y !

Yes %Qn

LS %c;) mo

_»-_fwu

...but further on leads you into
a maze filled with monsters

martinfowler.com/bliki/AntiPattern.htmd

Architecture is abstract
~until operationalized.

=, - Il i [- - =g
ora architecture_is_abstract until operationalized.

Architecture is abskract
whkil opera%nomainz@.d

AngularJ
1.3.15

Customerin 2

Oracle 12¢

Il . .". :.~.. v.
LI "' v
Wy« 114
B
adliiale
NN
b g\ 1P
‘ .
\\ a

nealfor m/mem ra/2015/03/30/archi rationaliz

ThoughtWorks’
, Y | NEAL FORD
Presentation £
PATT E R N S FunCtlonal Director / Soﬁmeme Wrangler
e Thlnklng -
i

C|°jure & FunctiohaIThinking:
|nSide Ou Functional

programming using
Stuart Halloway Java, Clojure & Scala
& Neal Ford Neal Ford

Engmeering
Practices

Neal Ford

O'REILLY"

SOFTWARE ARCHITECTURE SERIES

—— _—

O'REILLY’ O'REILLY" O'REILLY" OREILLY" OREILLY

Software Software Software Software Engineering
Architecture Architecture Architecture Architecture Practices for
Fundamentals: Fundamentals: Fundamentals Fundamentals Continuous
Part1: Part 2: Part 3 Part4 Deli

U n d erstan dln g Tal (in g a Soft Skills: Problem Solving, Soft Skills: Leadership, Negotiation, e |Very

: < Decision Making, Refactoring, Meetings, Working with People,
the Basics Deeper Dive Productivity, & Communications &Building a Tech Radar Neal Ford

Neal Ford, Mark Richards Neal Ford, Mark Richards Neal Ford, Mark Richards Neal Ford, Mark Richards
VIDEO VIDEO VIDEO VIDEO VIDEO

