
Mark Richards
Independent Consultant
Hands-on Enterprise / Integration Architect
Published Author / Conference Speaker

http://www.wmrichards.com
http://www.linkedin.com/pub/mark-richards/0/121/5b9

Software Architecture
Fundamentals Workshop

Part 2: A Deeper Dive

agenda

nealford.com/katas/

Software architecture
reflects the mapping
between capabilities

and constraints.

translating requirements

“our business is constantly changing
to meet new demands of the
marketplace”

???

translating requirements

translating requirements

“due to new regulatory requirements,
it is imperative that we complete end-
of-day processing in time”

???

“we need faster time to market to
remain competitive”

translating requirements

???

“our plan is to engage heavily in
mergers and acquisitions in the next
three years”

translating requirements

???

“we have a very tight timeframe and
budget for this project”

translating requirements

???

architecture pitfall

armchair architecture
whiteboard sketches are handed off as final architecture

standards without proving out the design

 occurs when you have non-
coding architects

 occurs when architects are not
involved in the full project
lifecycle

 occurs when architects don't
know what they are doing

armchair architecture

architecting for change

 business is in a constant state of change

 increased 
competition

 mergers

 acquisitions

 regulatory
changes

 growth

architecting for change

 technology is in a constant state of change

 frameworks

 platforms

 languages

 products

 patterns

architecting for change

techniques for change

reduce dependencies leverage standards

create product-agnostic
architectures

create domain-specific
architectures

reduce dependencies

Component B

Component A

Component D

Component C

Component B

Component A

Component D

Component CComponent C Component C

less coordination required (release schedules)faster to deploy due to decouplingcomponents can evolve independently

reduce dependencies

Component B

Component A

Component D

Component C

Component B

Component A

Component D

Component CComponent C Component C

 messaging
 architecture patterns

 service bus adapters

leverage standards

 industry standards

leverage standards

 corporate standards

leverage standards

 standards may not always be your
first choice, but they significantly help

in reducing the effort for change

 larger resource pool
 better integration with other systems

product-agnostic architecture
 isolate products to avoid vendor lock-in

application
3

application
1

application
4

major vendor product

application
2

application
3

application
1

application
4

application
2

major vendor product

domain-specific architecture

generic architectures are difficult to change
because they are too broad and take into
account scenarios that aren't used

limit the scope of the architecture by taking
into account drivers, requirements,
business direction, and industry trends

business
goals

business
requirements

industry
trends

business
direction

domain-specific architecture

Architecture Anti-pattern

vendor king
product-dependent architectures leading to a loss
of control of architecture and development costs

vendor king

vendor king

vendor king

message bus

vendor app as
a service

service-based
architectures

microservices
architecture

space-based
architecture

(More) Architecture Patterns

CQRS LMAX

let's talk about scalability for a moment...

web server app server

web server

web server

web server

web server

web server

web server

app server

app server

app server

app server

space-based architecture

space-based architecture

db

processing unitprocessing unit processing unit

virtualized middleware

...

messaging
grid data grid processing

grid
deployment

manager

processing unit

processing unit

module module module

data replication engine

in memory data

space-based architecture

middleware
messaging

grid

data grid

processing
grid

deployment
manager

space-based architecture

middleware
messaging

grid

data grid

processing
grid

deployment
manager

manages input request and session

space-based architecture

middleware
messaging

grid

data grid

processing
grid

deployment
manager

manages data replication between
processing units

space-based architecture

middleware
messaging

grid

data grid

processing
grid

deployment
manager

manages distributed
request processing

space-based architecture

middleware
messaging

grid

data grid

processing
grid

deployment
manager

manages dynamic processing unit
deployment

space-based architecture

 it's all about variable scalability...

 good for applications that have  
variable load or inconsistent peak  
times

 not a good fit for traditional large-scale relational
database systems

 relatively complex and expensive pattern to implement

space-based architecture

 message bus
process choreographer

service orchestrator

 business services BS BS BS BS BS BS

 enterprise services ES ES ES ES ES ES

 application services AS infrastructure services IS

service-oriented architecture

 message bus
process choreographer

service orchestrator

 business services BS BS BS BS BS BS

 enterprise services ES ES ES ES ES ES

 application services AS infrastructure services IS

abstract enterprise-level coarse-grained services
owned and defined by business users

no implementation - only name, input, and output
data represented as wsdl, bpel, xml, etc.

ExecuteTrade PlaceOrder ProcessClaim

service-oriented architecture

 message bus
process choreographer

service orchestrator

 business services BS BS BS BS BS BS

 enterprise services ES ES ES ES ES ES

 application services AS infrastructure services IS

concrete enterprise-level coarse-grained services
owned by shared services teams

custom or vendor implementations that are one-to-one
or one-to-many relationship with business services

CreateCustomer CalcQuote ValidateTrade

service-oriented architecture

 message bus
process choreographer

service orchestrator

 business services BS BS BS BS BS BS

 enterprise services ES ES ES ES ES ES

 application services AS infrastructure services IS

concrete application-level fine-grained services
owned by application teams

bound to a specific application context

AddDriver UpdateAddress CalcSalesTax

service-oriented architecture

 message bus
process choreographer

service orchestrator

 business services BS BS BS BS BS BS

 enterprise services ES ES ES ES ES ES

 application services AS infrastructure services IS

concrete enterprise-level fine-grained services owned
by infrastructure or shared services teams

implements non-business functionality to support both
enterprise and business services

WriteAudit CheckUserAccess LogError

service-oriented architecture

 message bus
process choreographer

service orchestrator

 business services BS BS BS BS BS BS

 enterprise services ES ES ES ES ES ES

 application services AS infrastructure services IS

mediation and routing
process choreography
service orchestration

message enhancement
message transformation
protocol transformation

service-oriented architecture

CreateQuote

message bus

CreateCustomer CalcQuote

service-oriented architecture

AddDriver AddVehicle

message bus

CheckDMV

message bus

WriteAudit

message bus

api layer

client requests client requests client requests

microservices architecture

api layer

client requests client requests client requests

microservices architecture
separately deployed components

api layer

client requests client requests client requests

microservices architecture
service component

api layer

client requests client requests client requests

microservices architecture
bounded context

service orchestration
microservices architecture

api layer

client requests client requests client requests

write audit

service orchestration
microservices architecture

api layer

client requests client requests client requests

create quote create cust calc quote add driver add vehicle check DMV inventory logistics

CQRS

http://codebetter.com/gregyoung/2010/02/16/cqrs-task-based-uis-event-sourcing-agh/

Query Model

Command Model

User Interface

traditional

CQRS Command Query Responsibility Separation

CQRS natural fits

 task-based user interface

 meshes well with event sourcing

 eventual consistency

eventual consistency

http://www.allthingsdistributed.com/2008/12/eventually_consistent.html

“Building reliable
distributed systems at

a worldwide scale
demands trade-offs

between consistency
and availability.”

CQRS natural fits

 task-based user interface

 meshes well with event sourcing

 eventual consistency

 complex or granular domains

consistency or availability
(but never both)

LMAX

LMAX
 JVM-based retail financial trading
platform

 centers on Business Logic Processor
handling 6,000,000 orders/sec on 1
thread

 surrounded by Disruptors, network of
lock-less queues

http://martinfowler.com/articles/lmax.html

overall structure

— single-threaded Java app
— relies only on JVM
— easy to test

Business
Logic

Processor

business logic processorBusiness
Logic

Processor

 in-memory
 event sourcing via input disruptor
 snapshots (full restart—JVM + snapshots
— less than 1 min)

 multiple instances running
 each event processed by multiple
processors but only one result used

input/output disruptors

disruptors

 custom concurrency component

 multi-cast graph of queues where
producers enqueue objects and
consumers dequeue in parallel

 ring buffer with sequence counters

20x106 slots for input buffer
4x106 slots for output buffer

“mechanical sympathy”

 started with transactions

 switched to Actor-based concurrency

 hypothesized & measured results

 CPU caching is key ➠ single writer
principle

“One ring to rule them all...”

 no architecture fits every circumstance

 evaluate good, bad, and ugly

 watch for primrose paths that turn ugly

 embrace pragmatism

what’s your day job?

 building wicked cool architectures is an
stimulating, rewarding intellectual
challenge...

 ...building CRUD applications isn’t

 coolness sometimes equals accidental
complexity

architecture pitfall

spider web architecture
creating large numbers of web services that

are never used just because you can

spider web architecture

application interface layer

service service service service service service service service

 just because you can create a
web service at the click of a
button doesn't mean you
should!

 let the requirements and
business needs drive what
services should be exposed

spider web architecture

Meeting Hacks

makers vs. managers

www.paulgraham.com/makersschedule.html

Since most powerful people
operate on the manager's

schedule, they're in a position to
make everyone resonate at their

frequency if they want to. But
the smarter ones restrain

themselves, if they know that
some of the people working for
them need long chunks of time

to work in.

imposed upon

imposed by

meetings…

imposed meetings

stick to the agenda

take one (or many) for the team

know the dramatis personæ

don’t ask important questions
you don’t already know the answer to

meeting imagery

don’t improvise white board
drawings in important meetings

imposed upon

imposed by

meetings…

imposed by

have someone take lightweight notes

set an agenda

is this more important than the work
you are pulling people away from?

don’t !

specialized meetings
<role>-huddle

stand-up

—keep it short
—keep it relevant
—everyone

—too many?
—geographically dispersed?

—police inappropriate levels of interaction

dev-huddle

BA-huddle

Architecture Refactoring
Techniques

determine what
architecture

changes are needed

create a business
case justifying the

changes

determine the
architectural root

cause of each issue

architecture refactoring

present your case and
plan to the business for
approval and funding

develop a high-level
architecture

refactoring plan

create a timeline
containing estimates

and resources

determine root cause

application builds fail almost every time something
is committed to the repository!

application components are too tightly coupled and
dependent on one another

application components do not have the right level
of granularity and isolation from a roles and
responsibility standpoint

application components are too tightly coupled and
dependent on one another

application components do not have the right level
of granularity and isolation from a roles and
responsibility standpoint

every time the application is deployed with new
functionality, something else usually breaks!

determine root cause

the application is a monolithic and growing quickly
based on new features and functionality; it is getting
too large for a single application.

application deployments take a long time,
sometimes lasting up to 25 minutes !

determine root cause

the application is becoming too large; it is consuming
about 95% of the available jvm resources during
normal load (memory, cpu, threads)

users are increasingly reporting performance issues
with the application!

determine root cause

root cause summary

the application is too tightly coupled and
is growing beyond what the current

architecture can support

determine root cause

determine architecture
changes

the monolithic
application is too tightly
coupled and is growing

beyond what the current
architecture can support

split the application into
multiple deployable units,

thereby decoupling
components and allowing
for more growth potential

justifying your case

split the monolithic application into multiple deployable
units, thereby decoupling components and allowing for
more growth potential

components will be more decoupled, thereby eliminating
frequent build issues

each part will use fewer jvm resources, thereby increasing
performance and allow for more growth

deployment is limited to a separate application unit, thereby
reducing deployment time and increasing robustness

technical justification

new functionality can be delivered faster, thereby improving
overall time to market

overall application quality will be improved, thereby reducing
bugs and the associated costs of fixing them

development and deployment costs associated with
developing new functionality will be significantly reduced

split the monolithic application into multiple deployable
units, thereby decoupling components and allowing for
more growth potential

business justification
justifying your case

refactoring techniques

use a playbook approach to outline
the architecture transformations

work in small iterations

identify the technical and business
value expected at each iteration

decide on migration vs. adaptation
(or a combination of both)

playbook approach

current state iteration 1 iteration 2 iteration 3

each iteration should clearly illustrate the changes to the
architecture each step along the way

refactoring techniques

playbook approach

current state iteration 1 iteration 2 iteration 3

identify the purpose behind each iteration

identify the technical and business value for each iteration

keep iterations as small as possible while still providing
enough technical and business value

try to minimize "staging iterations"

refactoring techniques

c2 c3
(new)

c1
(keep) the replacement of old components

with new ones through migration
over time

migration

migration vs. adaptation

(replace)

refactoring techniques

c2 c3
(new)

c1
(keep) easier to rollback changes

less overall risk

requires switching logic in calling
components(replace)

migration vs. adaptation
refactoring techniques

migration

c2

c1
(keep) refactoring of existing components

into new functionality

adaptation

(refactor)

migration vs. adaptation
refactoring techniques

c1
(keep)

c2

refactor vs. replacement

harder to rollback changes

no changes to calling components
(refactor)

migration vs. adaptation
refactoring techniques

adaptation

presenting your case

"how did things get this bad in the
first place?"

presenting your case

always present your plan to your immediate
manager before going to the business

presenting your case

don't scare people -
"present with urgency, not with panic"

presenting your case

although you may know all the answers, don't be
argumentative - take this as an opportunity to

educate the business instead

presenting your case

Architecture Anti-pattern

Imposter Syndrome
a term coined in the 1970s by psychologists and

researchers to informally describe people who are
unable to internalize their accomplishments

architecture
boundaries

architectural boundaries

there is an art to defining the box
that development teams can work
in to implement the architecture

architectural boundaries
tight boundaries

architectural boundaries
loose boundaries

architectural boundaries
appropriate boundaries

control freak architect

architect personalities

architect personalities

armchair architect

architect personalities

effective architect

the architect defines the architecture
and design principles used to guide

technology decisions

controlling the boundaries

controlling the boundaries

development team: we decided to incorporate the guava
library for the camel case conversion requirement. 

controlling the layered stack  

"take it out. I only want you to use the core
java api for this application. period."  

controlling the boundaries

development team: we decided to incorporate the guava
library for the camel case conversion requirement. 

controlling the layered stack  

"guava - that's a cool library name. carry on..." 

controlling the boundaries

development team: we decided to incorporate the guava
library for the camel case conversion requirement. 

controlling the layered stack  

if that's the only feature you are leveraging, you should
just use the java api. if there are other features you can

justify, then we can talk about it.  

controlling the boundaries

look for overlaps in existing functionality 

always seek justification for adding a new library  

provide guidance by making it clear what type of libraries
need discussion and approval and which ones don't 

controlling the layered stack  

what design principle would you create to
manage this type of boundary? 

framework 

general purpose 

controlling the boundaries

special
purpose 

loose
boundaries

architect
approval

architect
decision

controlling the layered stack  

development team: we need better performance - can we
access the database directly from the presentation layer? 

controlling the boundaries
pattern governance 

 presentation layer

 persistence layer

 database layer

component

component

component

 business layer component component

component

development team: we need better performance - can we
access the database directly from the presentation layer? 

controlling the boundaries
pattern governance 

 presentation layer

 persistence layer

 database layer

component

component

component

 business layer component component

component

development team: we need better performance - can we
access the database directly from the presentation layer? 

controlling the boundaries
pattern governance 

"no." 

development team: we need better performance - can we
access the database directly from the presentation layer? 

controlling the boundaries
pattern governance 

"it doesn't matter to me. if you think it would
help performance, then go for it."  

development team: we need better performance - can we
access the database directly from the presentation layer? 

controlling the boundaries
pattern governance 

"those layers are closed so that we can better control
change through layer isolation, so no. have you been able

to identify what might be causing the performance issues?"  

 persistence layer component component component

 database layer

 presentation layer

 business layer

component component component

component component component

 services layer component component component

controlling the boundaries
pattern governance 

what design principle would you create to
manage this type of boundary? 

controlling the boundaries
pattern governance 

clearly document and diagram the architecture  

justify your reasons for the architecture decisions  

make sure you effectively communicate your decisions  

what design principle would you create to
manage this type of boundary? 

development team: we added some really cool capabilities
that might be needed sometime in the future...  

controlling the boundaries
architecture scope

"did i tell you to add those capabilities? didn't
think so. take them out."  

development team: we added some really cool capabilities
that might be needed sometime in the future...  

controlling the boundaries
architecture scope

"great forward thinking guys! someday the users might
need that capability, and now we have it ready..."  

development team: we added some really cool capabilities
that might be needed sometime in the future...  

controlling the boundaries
architecture scope

"let's verify those features with the analysts to see if we
need them. if not then we'll take them out. we just need to
make sure we don't do anything to prevent that capability

from being added in the future." 

controlling the boundaries
architecture scope 

adding additional features over and above the requirements adds
additional development, testing, and maintenance time and costs  

this practice can lead to the infinity architecture anti-pattern  

document non-required features, verify it with the user community,
and make sure you don't do anything to restrict that functionality
in the future 

what design principle would you create to
manage this type of boundary? 

Architecture Anti-pattern

Yesterday’s best practice

is tomorrow’s anti-pattern.

Yesterday’s best practice

is tomorrow’s anti-pattern.

www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF

Yesterday’s best practice

is tomorrow’s anti-pattern.

1990

1992

1996

Yesterday’s best practice

is tomorrow’s anti-pattern.

2002

2007

2008

Yesterday’s best practice

is tomorrow’s anti-pattern.

Yesterday’s best practice

is tomorrow’s anti-pattern.

martinfowler.com/bliki/AntiPattern.html

Architecture is abstract
until operationalized.

nealford.com/memeagora/2015/03/30/architecture_is_abstract_until_operationalized.html

Architecture is abstract
until operationalized.

3D 4D2D

view

controller

model

ORM ORMHibernate
4.3.8

modelCustomer
1.3.5

controllerCustomerInfo
4.3.1

viewAngularJS
1.3.15

Oracle 12c

ORMHibernate
4.4.1

modelCustomer
1.3.5

controllerCustomerInfo
4.3.1

viewAngularJS
1.3.15

Oracle 12c

nealford.com/memeagora/2015/03/30/architecture_is_abstract_until_operationalized.html

nealford.com

@neal4d

