ThoughtWorks: (S

NEAL FORD ®lle® adllL
Director / Software Architect / Meme Wrangler

»| ||V

oflfe® ad(lI\ 4

Building Microservice
Architectures

W @nealdd
@ nealford.com

~

what problem '

o ﬂ‘

characteristics

engineering

AGENDA

Service-oriented Architecture

business services BS BS BS BS BS BS

abstract enterprise-level coarse-grained services
owned and defined by business users

no implementation - only name, input, and output
data represented as wsdl, bpel, xml, etc.

Service-oriented Architecture

concrete enterprise-level coarse-grained services
owned by shared services teams

custom or vendor implementations that are one-to-
one or one-to-many relationship with business
services

enterprise services

CreateCustomer CalcQuote ValidateTrade

Service-oriented Architecture

concrete application-level fine-grained services
owned by application teams

bound to a specific application context

AddDriver UpdateAddress CalcSalesTax

Service-oriented Architecture

concrete enterprise-level fine-grained services owned
by infrastructure or shared services teams

iImplements non-business functionality to support
both enterprise and business services

WriteAudit CheckUserAccess

Service-oriented Architecture

message bus

process choreographer

service orchestrator

mediation and routing message enhancement
process choreography message transformation

service orchestration protocol transformation

Service-oriented Architecture

business services BS BS BS BS BS

message bus

process choreographer

service orchestrator

enterprise services ES ES = ES ES ES

application services As infrastructure services 1s

WAAXLWILZE Tewse
maximize «t&nommai.i%g

Service-oriented Architecture

business services BS BS BS BS BS BS &

message bus

process choreographer

service orchestrator

enterprise services ES ES ES ES ES s ..

application services As infrastructure services s

@ incremental change
% opera&omattv ﬂOMPi@X

Yes&erciav’s besk
pra«c&ﬁ@. s tomorrow’s
am&impa&erw

We inadvertently build
architectures to solve
outdated problems.

Architecture is abstract
until operationalized.

nealford.com/memeagora/2015/03/30/architecture_is_abstract_until_operationalized.html|

1.3.15

ﬁ

Customerin
431

Customer
1.35

Hibernate
4.3.8

Architecture is abskract

unkil o

AQU<>

Pero&tﬁm

%

Oracle 12(:‘

D

alized.

Customer
1.3.5

Hibernate
441

Oracle 12¢

Y. .
W . "" .»‘1. v.
L ':r
adWr
adliitte
S SR
hadh' +®:
N :

ew

controller

d

ORM

\W&

nealford.com/memeagora/2015/03/30/architecture_is_abstract_until_operationalized.html

~

what problem '

o ﬂ‘

characteristics

engineering

AGENDA

Domain Driven Design

DE I N . DOMAIN-DRIVEN
Ia:klmu Complexity in me Heartof Snnware D ES I G N

VAUGHN VERNON
FOfCWOfd bYMdfﬁﬂ FOW'C! FoREwWORD BY ERIC EVANS i

[ﬁElllm

Bounded Context

Maintaining Model Integrity

keep mode! unified by—y,

CONTINUOUS

A
INTEGRATION YAY

TR llison Wby Tipmotino Seins

BOUNDED < Fol

-

CONTEXT S

=M

! S
averiapalied contexts through og W

//reate alied contexis as C ONTINUOUS
IS | JELIVERY

support muiip §
i FoncepEmesses | fresteamstogo DAviD FARLEY we

translate and insulate
unilaterally with

SEPARATE
WAYS

assessiaverview
relabonships with

Bic BALL OF
Mup

ANTICORRUPTION

LAYER

Microservices Architecture
distributed architecture

client requests client requests client requests

api layer

sefvice Jgm@ service service service m service T service g service 1 service
component component component component component component component component

module module module module module module module module

module module module module module module module module

NI N NS s s s == =
. RS TR Y Y Y . e
S—— S N N N~ S~ N~ N~

Microservices Architecture

separately deployed components

client requests client requests client requests

service j service \ service service A service service service \ service
component | §§ component | §{ component component /{8 component component | 88 component 1 j{i component

module) module | module | module | module | module module module

il i1 I i . k
module iy module | module ! module module ir module i module I module

Microservices Architecture

service
component

module

module

service component

client requests client requests

api layer

service service service service
component component i & component component

module module module | module

i
module module ¥ module i module

client requests

service service service
component component component

module module module

module module module

Nl NS s =
~ - N ~N ~
Sa— S S S

Microservices Architecture

service
component

module

module

bounded context

client requests

service service
component component

module module

module module

client requests

api layer

service i service
component component

module module

module module

client requests

service service service
component component component

module module module

module module module

Microservices Architecture
service orchestration

client requests client requests client requests

api layer

service
component

module

module

service
component

module

module

service
component

module

module

servic 2
comp ¢ Pt

module

module

service
component

module

module

s wrvice
cor.iponent

module

module

service
component

module

module

service
component

module

module

Monoliths vs. Microservices

E [+] [l

[=]

Monoliths vs. Microservices

09 Vil
We We
oV X 4 ®ofle C
\ \ L AN N 4
We We
o9V R 4 oll@® dll\ 4

Products, not Projects

projects:)

AR A >

oo I
BARA
ARAA

pradu&%s" *
QA amazoncom‘s “You build it, you run it”

Conway'’s Law

AR —

“organizations which design systems ... are

constrained to produce designs which are copies
of the communication structures of these

organizations”

—Melvin Conway

-

T

- sk | B

Siloed functional teams... ... lead to silod application architectures.
Because Conway's Law

xxx user interface

server-side

DBA

x Orders

Shippingx

Catalog

4

Monoliths vs. Microservices

09 Vil
We We
oV X 4 ®ofle C
\ \ L AN N 4
We We
o9V R 4 oll@® dll\ 4

Smart Endpoints, Dumb Pipes

\ " c— HTT? —> T
.’ : <~ messaqing —> ‘

business services

message bus

enterprise service.

/

application services A7 infrastructure services s

Standardize on integration, not platform

embrace polyglot solutions
where sensible

too many

‘ ‘ languages/platforms

& Have one, two or maybe three
ways of integrating, not 20.

too few
languages/platforms

nnnnnnnnnnnnnnnnnnnnn

T 66
Microservices

ervices - be flexible about what

happens inside the boxes
]

and stick with them.

Decentralized Data Management

i ACID e rsus BAS%
H // S
E N * \ ¢—L

i,

Decentralized Data Management

66 g,

Y5 Avoid distributed transactions if
at all possible

//\\

%o

|| =
)|

monolith - single database microservices - application databases

Decentralized Governance

Decentralized Governance

| L AIHIRJ L 41K
-. -’
oV (R 4 @llle ®|le®
\ 9 N 4
We We
o9V Y 4 oll@® I\ 4

Decentralized Governance

4
®lle® @l e
| -

Enterprise architects suffter from'less ® ‘_& Y
pressure to make the correct choice(s) '
iINn Microservice architectures. Q|® [\ 4

= t-_:. ""-—f';;::’__%\\h‘ ﬂ-’l"_::;_]-q [f lv" / I,' T

———
_aay /S

- 5 —— —
- e -
/ - - '8 —
. o~ \ g™ / & L
8 — - / g U " - ! }
— 7 { J J
’ . e 4
~ & 5 -‘x / . i Foerhy . o
e SE o J ‘l'l'llbi'
- i ' a
- P 3 {
~ p [3)
| J ', r v, y 4 8 '8

Infrastructure Automation

compile, unit acceptance integration user acceptance performance
and test test test test
functional test

deploy to
production

f
T Al Wiy Sipmatino Foics |

CONTINUOUS
DELIVERY

Jez HUMBLE, =
DAVID FARLEY s

HARARAARA AR { E g(-ooooc----------.--: ------------------ ‘
: ! c,glﬂc.swp? : :
: ~= : E
Il
Integration

~— — R T — — e

RULD TeST & RELEASE

Small, Single Responsibility

small enough to fit in your head

rewrite over maintain

(10—1000 ‘ / service

single responsibility

~

what problem '

o ﬂ‘

characteristics

engineering

AGENDA

service
component

module

module

Microservice

client requests

client requests

api layer

client requests

service
component

module

module

service
component

module

module

service
component

module

module

service
component

module

module

service
component

module

module

service
component

module

module

service
component

module

module

oaximwiLze

evolution

sufzrxor&

Microservice is the first
architectural style developed
post-Continuous Delivery.

D

Microservice Implementation

D

| Product |

| Product |

| Product |

| Product |

D

Real Time and Mobile CMS Ecommerce Demo External
Analytics Batch Interfaces Site Reporting
Product

g | 2 |
3rd party Gateway SMS Gateway
Product | Product | Product | Product |
Config Call Centre Marketing Reporting
Application Application Application Application [
$:] Accounté*:J 1' $__‘l
A/ E Services Services " Product Data
User/ Ro@ Producté*:l
Repository Member Store Repository —
Access and Entitlement i Product / static Catalog |
£]
%] Config a g] 2 | g] g’ 1]
Batch Lifec Metadat Product I Reportin
services | servces Rules Engine c Services
i Rules Config
Batch Interface = $:| $ | e
Config / Application Reportin?]
metadata store Rules store datastore
Vletadata Rules Engine H Reporting Services
1 LA

http://2012.33degree.org/pdf/JamesLewisMicroServices.pdf
http://www.infog.com/presentations/Micro-Services

Asynchronicity
returi optimized for

ranking/agqgreqgation,
not dLSFLO\j

3['.3

Prefer timely partial
over slow Com!at@.&e

&

Integration & Disintegration

")o‘ d.

‘s-)

Complected Deployments

complect, transitive verb:
intertwine, embrace, especially
to plait together production

Evolutionary Architecture

Components are
deployed.

Features are released.

Applications consist
of routing.

production

Evolutionary Architecture

Dis-integrate
services that
monhitoring shows
are no longer used

production

How Big?

OVAY
VAYA

AVAY
208 vava

release risk

services

Backends for Frontends

b

m’O(
&b embeddect

VA

Mone lith 1‘

https://www.thoughtworks.com/insights/blog/bff-soundcloud

Backends for Frontends

i0S

A

o

1

Auchld

web

k

RE

{BFF !/[ﬁ\,

AP

1

\"\ow\o\(j‘h\L

BFF as Migration Path

05 ool (wé

~

what problem '

o ﬂ‘

characteristics

engineering

AGENDA

Design For Failure n*

clients must respond gracefully to 9
provider failure

aggressive monitoring:

- business relevant
- architectural
- semantic

Monitoring

a®
“
“

Il.lllllllllllll
66 *, HVAYD 3:31

ou ave to get much better at ""
-zmmes 293w $I8X

cy '.'.
aaaaaaaaa

logstashm

logstash is a tool for managing events and |
and store them for later use (like, for search
with a web interface for searching and drilli

It is fully free and fully open source. The lice
much free to use it however you want in wh

Kiban

Make Ssense of a mountain of lo@ — Ruby!

B

Get Started »

. *
GitHub project Logstash Elasticsearch

@ Star 1,198 @ Fork 287

'

Every event underone roof

Aggregating Monitors

Response Time

~
w
X

w
o
X

N
w
=

@
=
=
1
[
a
"
@
C
[
=)
<o

05/11 12pm 05/12 12am 05/12 12pm
WA [pTR M nxDomain

Aggregating Monitors

numberOfApplicationErrors
57

numberOfServicedRequestsWithResponse200
136711

numberOfServicedRequestsWithResponse304
27782

numberOfServicedRequestsWithResponse404
303

numberOfServicedRequestsWithResponse500

141
go=o
. 66
Eﬁ?meﬁ? S totalNumberOfServicedRequests
‘ 172383

Capture metrics, and logs, for
O
%2 each node, and aggregate them
to get a rolled up picture.

Synthetic Transactions

CorrelationIDs

Terminal — java — 130x26

912 ERROR ~

ArithmeticEx

ID: 123

ID: 123
Building
Microservices

DESIGNING FINE-GRAINED SYSTEMS.

Use correlation IDs to track
down nasty bugs

Sam Newman

HTTP/1.1 503 Service Unavailable
<?xml version="1.0" ?>
<html>
<body>
<div id="healthchecks">

The

P tammers

Release It!

Design and Deploy
Production-Ready Software

Michael T. Nygard

GET /status/ HTTP/1.1
internal.service.com

Host:

<li class="up"=application database
<li class="down"=external service
<ful>
</div>
</body>
</html>

external service circuit breaker ojpsed

OREILLY

]

Use timeouts, circuit breakers
and bulk-heads to avoid
cascading failure,

Sam Newman

Engineering Consistency

integration

Dropwizard is a Java fra
friendly, high-performan

Developed by Yammer to power their JVM-based bac
ecosystem into a simple, light-weight package that |

Dropwizard has out-of-the-box support for sophisticate
more, allowing you and your team to ship a productior

metrics i

downstream

Building

Microservices

|||||||||| '

Consider Service Templates to
make it easy to do the right
thing!

Orchestration

Orchestration describes the
automated arrangement,
coordination, and management of
complex computer systems,
middleware, and services.

http://en.wikipedia.org/wiki/Orchestration_(computing)

X

choreography VS) orchestration
. asg
MICrOSEervices

Orchestration

recalc
quote

update

change
claims

address

Choreography

update
claims

change
address

e mediator versus broker topology

S hitp://shop.oreilly.com/product/110000195.do

ord, Mark Ric
VIDEO

Testing Microservices

Test Pyramid for Microservices

Inside the Box

S SLSLSLSLSLSSSSSSLSLSLSSSSSSSSRYSSSSSSSSSSSSSSSSSSSSSSSSSSSS LSS

/

NN SNAANAARAA NN AANANNNNNNN

Resources

~ Network Boundary

VIS LLL LSS

;//I/I/I/I///

2

Repositories

AARNARARARRAARARRA AR AR AR AR AN AN AR AN AN AN AN AN AN AN NN AN NN NN

External

N
N
N

Datastore

ﬂ///////////
\
N
N
N
)
N

Connection

NANANAANAAAAANAAAAAAAAAAAAAA AN AAN AN A NN NN N

//////////////

—.—.—.—.—.-.—.—.—.—.—.J

Y SLLSLLLSLLLSSLLSSLLSS LSS LSSSSLSSSLLSSLSSLLSSLLSSSSSSSSSSSSSSSSSSSSSS LSS S/,

N

Unit Testing

Repositories

Data Mappers / ORM

&\\ Unit - Sociable

%
2
7
2
Resources é
/
z -
? @
: 2
Service Layer g ~ =2
é Sociable
2
%
%
2
7 —
i \ A o
Domain & ? ~ -:/‘_ k
/ C____J E
? - ™~ |
/ - as o
% | |
? —
2 Solitary
%
%
%
%
%
%
%
7
%
7
%
7
7
7
%
%

AR NN

LSLSISSSSSSSSSSSS LS LSS SIS LSS LSS LSS LSS LSS LSS LSS LSS SIS LSS LSS SSSSSSSSSSSSSSSSSS,

(]
4
0

-
[s o

g 3 ;
[S C &
o @ 3 S § S
omm - @ m m s \rd/
et S ® g b 9 o=
A E 5 8 b E VS
2 5 ® £ 5 5 =
g Z O w o U =0
e Sy SEN
& NN y
= W I |

V/// — - Lo
.

— //////////////// AAAANANANNNNANNNANAAN ANNANNANNNNNNNNN N AR NANNNN AN NN NN AN AN NN NNNNNNNNNN _

AhIIJJI/ Y Y Yy Y

y//@ l—

N

” / 0
N 4 |
\) :
1}] v _
.M ﬂla 0 0
N | +

\ w [cw ;
N 21 g & m
N | -

N = ol I ffa .
.w S - h=20 I _
IN | © v “ .
N | v > o _
N | O © ol N\ N . .
_” (o't -l () 3 N \

\ \ N - |
N (<)) oZ TN N\

N | N\ N\)
N L \ \

”) ” Y |
AN > X Yy 1
_” p) // N

3) |
/ []
1

_

(]
4
0

-
[s o

g 3 ;
[S C &
o @ 3 S § S
omm - @ m m s \rd/
et S ® g b 9 o=
A E 5 8 b E VS
2 5 ® £ 5 5 =
g Z O w o U =0
e Sy SEN
& NN y
= W I |

V/// — - Lo
.

— //////////////// AAAANANANNNNANNNANAAN ANNANNANNNNNNNNN N AR NANNNN AN NN NN AN AN NN NNNNNNNNNN _

AhIIJJI/ Y Y Yy Y

y//@ l—

N

” / 0
N 4 |
\) :
1}] v _
.M ﬂla 0 0
N | +

\ w [cw ;
N 21 g & m
N | -

N = ol I ffa .
.w S - h=20 I _
IN | © v “ .
N | v > o _
N | O © ol N\ N . .
_” (o't -l () 3 N \

\ \ N - |
N (<)) oZ TN N\

N | N\ N\)
N L \ \

”) ” Y |
AN > X Yy 1
_” p) // N

3) |
/ []
1

_

gical Boundary

rotocol
omain

a 0O
LN LA AL AL LA AL AL AL AR A AN AN AN AN AN AN A NN AN NN NN NN NNNNNN NN
‘.".".'J . _J Jx X rrxX X rrr X JrXrr X X J

]
0

=]
e |

- a» a» o af

2 Network Boundary

| Lo

e o

Component Testing

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

YIIIIISSSLY,
%
7

-
L]
l
L]
I
L
I
L
I
L]
I
L
I
L]
I
L]
l
.
I
L]
l
L]
l
L]
I
L
I
L
I
.
I
L
I
L]
I
L]
l

> o o a» a» & -
bl SANNNANNANNNNNNNNNNNNNNN

Repositories

RN
N

N
‘N
R

N
‘N
R

N
‘N
R

N
‘N
R

N
‘N
N\

N
‘N
R

\
‘N
R

N
‘N
\

N
‘N
R
N

P-.-- - D ©® D D ® o

¢ X XX X XX X ¢ X Y X X X ¢ X Y X X X X J
NANANAANNANAN AN NN AN NN AN NN NNANANAN AN AN NN AN AN AN NN NN NN

v

Communication

Component Test
Boundary

)
!
|
|
|
!
|
!
|

e | ALE

Layer

NANAANAANANAANNANAANANNANNAN AN ANNANNANNNNNNNNNNNNNAY

AANARARRARAAR AR NANAN AN AN AN AN AN NN NN

..,

o

%

o o a» a» o a»
© D D © GED GED © GED GED © GED D © G
NANNNNNNNNNNNNNNNNNN

Component Testing

shims:

inproctester
github.com/aharin/inproctester

Plasma

github.com/jennifersmith/plasma
D Protocol

D Domain

/ (L)

! | Logical Boundary

r----‘

7 Network Boundary

Communication

i Component Test
Boundary

N\

M IX T I T --.--.--.‘ ‘ :om onent Iestln
? SIS S ?I'

? ? :

? esources ? .

? ? .—-.-—.—-.
7 Vi 7 7z 7,
7 H 7 : 7
? ervice ? % l
g Layer ? :
? 2 /

% 7

% 7
? / i
? J
? cesescenenoen
Z

Z

7

D Protocol
G Domain

;//I/////I///

7 ’ Network Boundary

External
Datastore

| | Logical Boundary

7777777777774

L4

Extermnal

Persistence

—— Communication

Component Test
Boundary

Consumer Driven Contracts

http://martinfowler.com/articles/consumerDrivenContracts.html

Contract Testing

Pact
ith m/real -com-au/

k IS AL SIS 4

{"id" 5, Pacto

"name"; "jJames", ithub.com/thoughtworks/pacto
ll@ll: 24}

Janus

github.com/gga/janus
Contract A Contract C

/ J Contract B & \

{"id": 5, {"id": 5, {"id": 5,
"name"; "James", "name"; "James", "name"; "James",
|l@ll: 24 II@II: 24} II@": 24}

--------- ’. V2222227 172222228 FTTTTIIIIIS S, JIITTTTTTITI I IS TTTTITY,

SSNSSSSSSNRNRANNNNNNNNNNNNNNSSNNA
ANSSSRSS SRR NNNNNNNNNNNNNNNNNNNNNNY

L

{

focus on personas
% user ja-urnejs J

End-to-End Testing

Fossibi.e

maolkee besks |
d&&&“i&\dﬁ?@.hd@.h& i

E,sebj

— . — e— - — - —

PEDEHOED GD O GD D O G G © & i Papo e as o a

rely o nfrastructure as code for repeatability

Abstract out underlying

platform differences to provide a

uniform deployment
mechanism.

Don’'t Let Changes Build Up

%
ST
o

staging production

Don’'t Let Changes Build Up

staging production

O'REILLY"

. 66
Microservices

nnnnnnnnnnn (

Don't let changes build up -
eces release as soon as you can, and
preferably one at a time!

Dynamic Service Registries

G

https://consul.io/

http://zookeeper.apache.org

metcd

https://coreos.com/etcd/

Service Visualization

adrianco / spigo
https://github.com/adrianco/spigo

DEVOPS BOOKMARKS

THEIRIES)

Source Code Management
Continuous Integration & Delivery
Packaging & Artifacts
Virtualization & Containers
Cloud & PaaS Environments
Configuration Management
Provisioning

Orchestration

Service Discovery

Process Management
Logging & Monitoring

Metrics & Visualization

O O OO OO 88 OO O 0 0O

Security & Hardening
PLATFORM

A Linux

2= Windows

@& OSX

Go to “http://www.devopsbookmarks.com/”

Tools

devopsbookmarks.com

Ansible

A versatile orchestration engine that can
automate systems and apps. Instead of a
custom scripting language or code, it is
very simple and shell based. It is also
agent-less, so you can just start using it
right away and get things done

A p

linux, open-source, provisioning, config-mgmt,
orchestration, python

Batou

Batou makes it easy to perform
automated deployments. It combines
Fabric's simplicty and SSH automation,

with Puppet's declarative syntax and
idempotence

78) p

linux, open-source, provisioning, python

Bcfg2

bee-config (Bcfg) 2 is a centralized
configuration management server to
configure large number of systems, built

Dokku Alt

Dokku on Steroids. The smallest PaaS
implementation you've ever seen. It's fork
of original dokku. The idea behind this
fork is to provide complete solution with
plugins covering most of use-cases
which are stable and well tested.

o) 4

linux, open-source, virt, cloud-paas, provisioning,
shell?

Dokku

It uses docker, git-receive and a few
other lightweight and clever libraries to
build a quick PaaS, all around just 100
lines of code! An excellent small tool to
get started with PaaS systems. The same
developer is creating a larger scale,
production quality system called Flynn.

o) 4

linux, open-source, virt, cloud-paas, provisioning.
shell?

www.devopsbookmarks.com/

Turnkey Platforms

L.BO)

vamp.io g

ovamp“

WHATISVAMP? QUICKSTART DOCS BLOG GITHUB

Deploy and manage microservices with
power and ease.

Vamp, or the Very Awesome Microservices Platform, takes the pain out of running complex
and critical service based architectures. Vamp's core features are a platform-agnostic
microservices DSL, powerful A-B testing/canary releasing, autoscaling and an integrated
metrics & event engine.

Quick start

Vamp 0.8.3 licensed under Apache 2.0

ose =
OVamp~" owomes me °

R RGp—— [r—
9050/http » frontend.port
o 304
frontend

monarch_front0.1

Manage your microservices through a single pane of glass.

Vamp provides you with a set of powerful features to manage microservices and container based architectures, all
through a single pane of glass. Vamp has deeply ingrained support for canary releases and A/B testing, auto scaling
service discovery, a live metrics & events stream.

Simple canary releasing

Testing out a new service with just your [0S users?
Vamp gives you a straight DSL and AP to plan
your canary releases, blue/green deployments and
a/b tests.

I

n more —

Platform independent auto scaling
Using SLA, Vamp allows you to scale up (and
down) your services. Just like on AWS, but on any
platform: in the cloud or on premise. Vamp's SLA
model is open, event-driven and plugable.

Learn mc

Turnkey Platforms

hashicorp.com

HashiCorp Abou s ! Partners Atlas Login

$ otto dev $ otto deploy

Otto

SEP282015 | MITCHELL Hy

MOTO | OTTO

Today we announce Otto — the successor to Vagrant. Otto is the single solution to
develop and deploy any application, with first class support for microservices. It is the
most powerful tool we've built yet.

Otto automatically builds development environments without any configuration; it can
detect your project type and has built-in knowledge of industry-standard tools to setup a
development environment that is ready to go. When you're ready to deploy, otto builds
and manages an infrastructure, sets up servers, builds, and deploys the application

With the growing trend of microservices, Otto knows how to install and configure service
dependencies for development and deployment. It automatically exposes these
dependencies via DNS for your application to consume.

Vagrant brought simplicity and power to development, and we believe we've brought that
same elegant user experience to both development and deployment with Otto.

Read on to learn more.

The industry has needed this kind of abstraction for a long time, and it's finally here
with Otto.

Ben McRae, Head of Technical Operations at Conde Nast Commerce

The Successor to Vagrant

Vagrant does a lot right. Vagrant downloads have continued to accelerate and grow to
this day. There are more Vagrant downloads per day today than ever before. But we think
we can do even better.

We've learned a lot about developers and development environments over the past six
years:

* Development environments are similar: All Ruby development environments look
alike, all PHP development environments look alike, etc. There isn't much deviation
between two development environments for the same language or framework. The
Vagrantfile requires users to configure these environments for every project, rather
than having it abstracted away.

* Developers want to deploy: After developing an application, the next step is to
deploy! "vagrant up" to production has been a feature request for years. Production
environments look very different from development: load balancers, firewalls,
routing concerns, new configurations, etc. Unfortunately, the Vagrantfile isn't a good
format to describe this information

Microservices are difficult: More and more applications are being written in a
service oriented way. Modeling these services for development and deploy is
difficult. The Vagrantfile puts the burden of installing/configuring every service onto

https://www.hashicorp.com/blog/otto.htm]

~

what problem '

o ﬂ‘

characteristics

engineering

AGENDA

You must be
this tall to use
microservices

‘ CONTINUOUS
DELIVERY

Jez HuMBLE, S

DAviD FARLEY S e 8

(Micro)service architectures provide unique
benefits at the cost of increased (essential)
complexity.

E2
Q
o

|

codingthearchitecture.com ¢

000 < (0 ¥ @O =

coding—

P Blog Presentations Books ™ Training Search

architecture

If you can't build a monolith,

Softwa nt design

what makes you think

%

microservices are the answer?

Distributed big balls of mud

If you can't build a monolith, what makes you think microservices are the answer?

If you want evidence that the software development industry is susceptible to fashion, just go and take a look at all of the hype
around microservices. It's everywhere! For some people microservices is "the next big thing", whereas for others it's simply a
lightweight evolution of the big SOAP service-oriented architectures that we saw 10 years ago "done right". | do like a lot of what
the current microservice architectures are doing, but it's by no means a silver bullet. Okay, | know that sounds obvious, but | think

many people are jumping on them for the wrong reason.

~ Monolit/uc. Service-based N

www.codingthearchitecture.com/2014/07/06/distributed_big_balls_of_mud.html

ervice-based Architecture

is there a middle ground?

business services client requests client requests client requests

message bus
api layer

process choreographer

service orchestrator

enterprise services

application services ~ As infrastructure services {fia

service-oriel croservices
architectu chitecture

integration hub middleware

service service service

component component component

module module module module module module

module module module

service-based
architecture

service
component

module

Service-based Architecture

client requests

service component

client requests

client requests

api layer

I

service service service
component ‘component component

modue module modue

modue moduie modue

service service

component

component

module

module

module

module

module

module

module

module

module
module
module

module

module

module

module

module

module module module module

module module module module

service
granularity

service service service
component component component

module module module module

module

database
scope

integration
hub

Migration

presentation Iayer component component component

bUSineSS Iayer component component component

perSiStence Iayer component component component

database layer

client requests client requests client requests

api layer

I

service service service service
component component component component

service service service
component component component

component

module module module module module module module module

module module module module module module module

module

v v v v v v v v
N~ ~ ~ N~ N ~ ~ N~
S———— e SN——— SN—— SN——— SN—— e SN———

Partition Along Natural Boundaries

B AVAY
o8 vaAvVA
AVAY

208 vava

Build a small number of larqger services first.

domain @
[ructural . transactional
@ p Structura
‘organizationa/
seea

Inverse Conway Maneuver

;s
4 [N
. .
4 [N
rd .
! E '
! x [}
’ L}
! '
»—& U ,
rd .
. . ‘)
P N o
rd LY - = |
Y e ’ [i
] . ') |
. s‘ ! %')
A ' 1
’ L} ' '
’ $ L
’ L
! v
! !

Ruild keams khal Loole Like
sse 00N bhe architecture uvou wank

cee g (and ik will follow).

case study: RealEstate.com.au

Line of business Line of business Line of business

Inside LOB, comms
IS sync or async

All integration between
lines of business is

async batch
<> J

Squads own services | mmetemmm— . Squad Squad
in their LOB
Squad | | Squad Squad Squad | | Squad
A A 7'y

Delivery services

Provides tooling and consulting to squads

Efferent Coupling

i

B
AR -

efferent

Strive for low efferent
coupling for your team,

Continuous Delivery

Teams with low efferent coupling

“ ‘ ° o 'l ‘ de.liver relativelyir?depenCJ!entIy

INt0 @ common Integration

‘ pipeline (without fearing breaking
each others builds).

Il OREILLY

nealford.com ThoughtWorks

,@neamd

nealford.com/videos

| NEAL FORD
Presentation

Techniques for Crafting Better Presentations

Director / Software Architect / Meme Wrangler

Borland

JBuilder 3

" The Productive
Programmer

Functional Thinking:
Functional
programming using
Java, Clojure & Scala

Neal Ford

Clojure
Engmeering Inside Ou

Practices
Neal Ford

O'REILLY"

SOFTWARE ARCHITECTURE SERIES

www.oreilly.com/software-architecture-video-training-series.html

SOFTWARE ARCHITECTURE SERIES SOFTWARE ARCHITECTURE SERIES | SOFTWARE ARCHITECTURE SERIES

Software
Architecture
Fundamentals
Soft Skills

Stuart Halloway
& Neal Ford

OREILLY

SOFTWARE ARCHITECTURE SERIES

Software
Architecture
Fundamentals
People Skills

Leadership, Negotiation,
Meetings, Working with People,

OREILLY

SOFTWARE ARCHITECTURE SERIES

Software
Architecture
Fundamentals
Service-Based
Architectures

Structure, Engineering

O'REILLY
Engineering
Practices for
Continuous
Delivery

Software
Architecture
Fundamentals
Understanding

Software
Architecture
Fundamentals
Beyond the Basics

Tradeoffs, Abstraction,
Comparing Architectures,

the Basics

Problem Solving, Decision
Making, Refactoring,

Fundamentals, Patterns, AntiPatterns,

Soft Skills, Continuous Delivery, Integration and Enterprise

and Code Analysis Tools
Neal Ford, Mark Richards
VIDEO

Architecture, Emergent Design

Neal Ford, Mark Richards
VIDEO

Productivity & Communications
Neal Ford, Mark Richards
VIDEO

and Building a Tech Radar
Neal Ford, Mark Richards
VIDEO

Practices, and Migration
Neal Ford, Mark Richards
VIDEO

Neal Ford

VIDEO

