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Service-oriented Architecture

business services BS BS BS BS BS BS

abstract enterprise-level coarse-grained services
owned and defined by business users

no implementation - only name, input, and output
data represented as wsdl, bpel, xml, etc.



Service-oriented Architecture

concrete enterprise-level coarse-grained services
owned by shared services teams

custom or vendor implementations that are one-to-
one or one-to-many relationship with business
services

enterprise services

CreateCustomer CalcQuote ValidateTrade




Service-oriented Architecture

concrete application-level fine-grained services
owned by application teams

bound to a specific application context

AddDriver UpdateAddress CalcSalesTax



Service-oriented Architecture

concrete enterprise-level fine-grained services owned
by infrastructure or shared services teams

iImplements non-business functionality to support
both enterprise and business services

WriteAudit CheckUserAccess




Service-oriented Architecture

message bus

process choreographer

service orchestrator

mediation and routing message enhancement
process choreography message transformation

service orchestration protocol transformation



Service-oriented Architecture

business services BS BS BS BS BS

message bus

process choreographer

service orchestrator

enterprise services ES ES = ES ES ES

application services  As infrastructure services 1s
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Service-oriented Architecture

business services BS BS BS BS BS BS &

message bus

process choreographer

service orchestrator

enterprise services ES ES ES ES ES s ..

application services  As infrastructure services s

@ incremental change
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We inadvertently build
architectures to solve
outdated problems.




Architecture is abstract
until operationalized.

nealford.com/memeagora/2015/03/30/architecture_is_abstract_until_operationalized.html|




1.3.15

ﬁ

Customerin
431

Customer
1.35

Hibernate
4.3.8

Architecture is abskract

unkil o

AQU<>

Pero&tﬁm

%

Oracle 12(:‘

D

alized.

Customer
1.3.5

Hibernate
441

Oracle 12¢

Y. .
W . "" .»‘1. v.
L ':r
adWr
adliitte
S SR
hadh' +®:
N :

ew

controller

d

ORM

\W&

nealford.com/memeagora/2015/03/30/architecture_is_abstract_until_operationalized.html




~

what problem '

o ﬂ‘

characteristics

engineering

AGENDA



Domain Driven Design
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Bounded Context

Maintaining Model Integrity
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Microservices Architecture
distributed architecture

client requests client requests client requests

api layer

sefvice  Jgm@  service service service m service T service g service 1 service
component component component component component component component component

module module module module module module module module

module module module module module module module module
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Microservices Architecture

separately deployed components

client requests client requests client requests

service j service \ service service A service service service \ service
component | §§ component | §{ component component /{8 component component | 88 component 1 j{i component

module ) module | module | module | module | module module module
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Microservices Architecture

service
component

module

module

service component

client requests client requests

api layer

service service service service
component component i & component component

module module module | module
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client requests

service service service
component component component
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Microservices Architecture

service
component

module

module

bounded context

client requests

service service
component component

module module

module module

client requests

api layer

service i service
component component

module module

module module

client requests

service service service
component component component

module module module

module module module




Microservices Architecture
service orchestration

client requests client requests client requests

api layer
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Monoliths vs. Microservices

E [+] [l

[=]




Monoliths vs. Microservices

09 Vil
We We
oV X 4 ®ofle C
\ \ L AN N 4
We We
o9V R 4 oll@® dll\ 4




Products, not Projects

projects: )
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pradu&%s" *
QA amazoncom‘s “You build it, you run it”




Conway'’s Law

AR —

“organizations which design systems ... are

constrained to produce designs which are copies
of the communication structures of these

organizations”

—Melvin Conway

-

T

- sk | B

Siloed functional teams... ... lead to silod application architectures.
Because Conway's Law



xxx user interface

server-side

DBA



x Orders

Shippingx

Catalog
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Monoliths vs. Microservices
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Smart Endpoints, Dumb Pipes
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business services

message bus

enterprise service.
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application services A7 infrastructure services s




Standardize on integration, not platform

embrace polyglot solutions
where sensible

too many

‘ ‘ languages/platforms

& Have one, two or maybe three
ways of integrating, not 20.

too few
languages/platforms

nnnnnnnnnnnnnnnnnnnnn

T 66
Microservices

ervices - be flexible about what

happens inside the boxes
]

and stick with them.




Decentralized Data Management
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Decentralized Data Management

66 g,

Y5 Avoid distributed transactions if
at all possible
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monolith - single database microservices - application databases




Decentralized Governance




Decentralized Governance
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Decentralized Governance
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Infrastructure Automation

compile, unit acceptance integration user acceptance performance
and test test test test
functional test

deploy to
production

f
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Small, Single Responsibility

small enough to fit in your head

rewrite over maintain

(10—1000 ‘ / service

single responsibility
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Microservice is the first
architectural style developed
post-Continuous Delivery.
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Microservice Implementation

D

| Product |

| Product |

| Product |

| Product |

D

Real Time and Mobile CMS Ecommerce Demo External
Analytics Batch Interfaces Site Reporting
Product

g | 2 |
3rd party Gateway SMS Gateway
Product | Product | Product | Product |
Config Call Centre Marketing Reporting
Application Application Application Application [
$:] Accounté*:J 1' $__‘l
A/ E Services Services " Product Data
User/ Ro@ Producté*:l
Repository Member Store Repository —
Access and Entitlement i Product / static Catalog |
£]
%] Config a g] 2 | g ] g’ 1]
Batch Lifec Metadat Product I Reportin
services | servces Rules Engine c Services
i Rules Config
Batch Interface = $:| $ | e
Config / Application Reportin?]
metadata store Rules store datastore
Vletadata Rules Engine H Reporting Services
1 LA

http://2012.33degree.org/pdf/JamesLewisMicroServices.pdf
http://www.infog.com/presentations/Micro-Services



Asynchronicity
returi optimized for

ranking/agqgreqgation,
not dLSFLO\j
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Integration & Disintegration
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Complected Deployments

complect, transitive verb:
intertwine, embrace, especially
to plait together production




Evolutionary Architecture

Components are
deployed.

Features are released.

Applications consist
of routing.

production



Evolutionary Architecture

Dis-integrate
services that
monhitoring shows
are no longer used

production



How Big?

OVAY
VAYA

AVAY
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release risk

# services



Backends for Frontends
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https://www.thoughtworks.com/insights/blog/bff-soundcloud




Backends for Frontends
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BFF as Migration Path
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Design For Failure n*

clients must respond gracefully to 9
provider failure

aggressive monitoring:

- business relevant
- architectural
- semantic



Monitoring

a®
“
“

Il.lllllllllllll
66 *, HVAYD 3:31

ou ave to get much better at ""
-zmmes 293w $I8X

cy '.'.
aaaaaaaaa




logstashm

logstash is a tool for managing events and |
and store them for later use (like, for search
with a web interface for searching and drilli

It is fully free and fully open source. The lice
much free to use it however you want in wh

Kiban

Make Ssense of a mountain of lo@ — Ruby!

B

Get Started »

. *
GitHub project  Logstash Elasticsearch

@ Star 1,198 @ Fork 287

'

Every event underone roof




Aggregating Monitors

Response Time
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Aggregating Monitors

numberOfApplicationErrors
57

numberOfServicedRequestsWithResponse200
136711

numberOfServicedRequestsWithResponse304
27782

numberOfServicedRequestsWithResponse404
303

numberOfServicedRequestsWithResponse500

141
go=o
. 66
Eﬁ?meﬁ? S totalNumberOfServicedRequests
‘ 172383

Capture metrics, and logs, for
O
%2 each node, and aggregate them
to get a rolled up picture.



Synthetic Transactions




CorrelationIDs . ...

Terminal — java — 130x26

912 ERROR ~

ArithmeticEx

ID: 123

ID: 123
Building
Microservices

DESIGNING FINE-GRAINED SYSTEMS.

Use correlation IDs to track
down nasty bugs

Sam Newman



HTTP/1.1 503 Service Unavailable
<?xml version="1.0" ?>
<html>
<body>
<div id="healthchecks">
<ul>

The

P tammers

Release It!

Design and Deploy
Production-Ready Software

Michael T. Nygard

GET /status/ HTTP/1.1
internal.service.com

Host:

<li class="up"=application database</li>
<li class="down"=external service</li>
<ful>
</div>
</body>
</html>

external service circuit breaker ojpsed

OREILLY

]

Use timeouts, circuit breakers
and bulk-heads to avoid
cascading failure,

Sam Newman




Engineering Consistency

integration

Dropwizard is a Java fra
friendly, high-performan

Developed by Yammer to power their JVM-based bac
ecosystem into a simple, light-weight package that |

Dropwizard has out-of-the-box support for sophisticate
more, allowing you and your team to ship a productior

metrics i

downstream

Building

Microservices

|||||||||| '

Consider Service Templates to
make it easy to do the right
thing!



Orchestration

Orchestration describes the
automated arrangement,
coordination, and management of
complex computer systems,
middleware, and services.

http://en.wikipedia.org/wiki/Orchestration_(computing)
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choreography VS ) orchestration
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Orchestration

recalc
quote

update

change
claims

address




Choreography

update
claims

change
address

e mediator versus broker topology

S hitp://shop.oreilly.com/product/110000195.do

ord, Mark Ric
VIDEO



Testing Microservices




Test Pyramid for Microservices




Inside the Box
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gical Boundary
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Component Testing

shims:

inproctester
github.com/aharin/inproctester

Plasma

github.com/jennifersmith/plasma
D Protocol
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Consumer Driven Contracts

http://martinfowler.com/articles/consumerDrivenContracts.html




Contract Testing

Pact
ith m/real -com-au/

k IS AL SIS 4

{"id" 5, Pacto

"name"; "jJames", ithub.com/thoughtworks/pacto
ll@ll: 24}

Janus

github.com/gga/janus
Contract A Contract C

/ J Contract B & \

{"id": 5, {"id": 5, {"id": 5,
"name"; "James", "name"; "James", "name"; "James",
|l@ll: 24 II@II: 24} II@": 24}
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focus on personas
% user ja-urnejs J

End-to-End Testing
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rely o nfrastructure as code for repeatability






Abstract out underlying

platform differences to provide a

uniform deployment
mechanism.



Don’'t Let Changes Build Up
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staging production




Don’'t Let Changes Build Up

staging production

O'REILLY"

. 66
Microservices

nnnnnnnnnnn (

Don't let changes build up -
eces release as soon as you can, and
preferably one at a time!







Dynamic Service Registries

G

https://consul.io/

http://zookeeper.apache.org

metcd

https://coreos.com/etcd/



Service Visualization

adrianco / spigo
https://github.com/adrianco/spigo



DEVOPS BOOKMARKS

THEIRIES)

Source Code Management
Continuous Integration & Delivery
Packaging & Artifacts
Virtualization & Containers
Cloud & PaaS Environments
Configuration Management
Provisioning

Orchestration

Service Discovery

Process Management
Logging & Monitoring

Metrics & Visualization

O O OO OO 88 OO O 0 0O

Security & Hardening
PLATFORM

A Linux

2= Windows

@& OSX

Go to “http://www.devopsbookmarks.com/”

Tools

devopsbookmarks.com

Ansible

A versatile orchestration engine that can
automate systems and apps. Instead of a
custom scripting language or code, it is
very simple and shell based. It is also
agent-less, so you can just start using it
right away and get things done

A p

linux, open-source, provisioning, config-mgmt,
orchestration, python

Batou

Batou makes it easy to perform
automated deployments. It combines
Fabric's simplicty and SSH automation,

with Puppet's declarative syntax and
idempotence

78) p

linux, open-source, provisioning, python

Bcfg2

bee-config (Bcfg) 2 is a centralized
configuration management server to
configure large number of systems, built

Dokku Alt

Dokku on Steroids. The smallest PaaS
implementation you've ever seen. It's fork
of original dokku. The idea behind this
fork is to provide complete solution with
plugins covering most of use-cases
which are stable and well tested.

o) 4

linux, open-source, virt, cloud-paas, provisioning,
shell?

Dokku

It uses docker, git-receive and a few
other lightweight and clever libraries to
build a quick PaaS, all around just 100
lines of code! An excellent small tool to
get started with PaaS systems. The same
developer is creating a larger scale,
production quality system called Flynn.

o) 4

linux, open-source, virt, cloud-paas, provisioning.
shell?

www.devopsbookmarks.com/



Turnkey Platforms

L.BO)

vamp.io g

ovamp“

WHATISVAMP?  QUICKSTART  DOCS BLOG  GITHUB

Deploy and manage microservices with
power and ease.

Vamp, or the Very Awesome Microservices Platform, takes the pain out of running complex
and critical service based architectures. Vamp's core features are a platform-agnostic
microservices DSL, powerful A-B testing/canary releasing, autoscaling and an integrated
metrics & event engine.

Quick start

Vamp 0.8.3 licensed under Apache 2.0

ose =
OVamp~"  owomes  me °

R RGp—— [r—
9050/http » frontend.port
o 304
frontend

monarch_front0.1

Manage your microservices through a single pane of glass.

Vamp provides you with a set of powerful features to manage microservices and container based architectures, all
through a single pane of glass. Vamp has deeply ingrained support for canary releases and A/B testing, auto scaling
service discovery, a live metrics & events stream.

Simple canary releasing

Testing out a new service with just your [0S users?
Vamp gives you a straight DSL and AP to plan
your canary releases, blue/green deployments and
a/b tests.

I

n more —

Platform independent auto scaling
Using SLA, Vamp allows you to scale up (and
down) your services. Just like on AWS, but on any
platform: in the cloud or on premise. Vamp's SLA
model is open, event-driven and plugable.

Learn mc




Turnkey Platforms

hashicorp.com

HashiCorp Abou s ! Partners Atlas Login

$ otto dev $ otto deploy

Otto

SEP282015 | MITCHELL Hy

MOTO | OTTO

Today we announce Otto — the successor to Vagrant. Otto is the single solution to
develop and deploy any application, with first class support for microservices. It is the
most powerful tool we've built yet.

Otto automatically builds development environments without any configuration; it can
detect your project type and has built-in knowledge of industry-standard tools to setup a
development environment that is ready to go. When you're ready to deploy, otto builds
and manages an infrastructure, sets up servers, builds, and deploys the application

With the growing trend of microservices, Otto knows how to install and configure service
dependencies for development and deployment. It automatically exposes these
dependencies via DNS for your application to consume.

Vagrant brought simplicity and power to development, and we believe we've brought that
same elegant user experience to both development and deployment with Otto.

Read on to learn more.

The industry has needed this kind of abstraction for a long time, and it's finally here
with Otto.

Ben McRae, Head of Technical Operations at Conde Nast Commerce

The Successor to Vagrant

Vagrant does a lot right. Vagrant downloads have continued to accelerate and grow to
this day. There are more Vagrant downloads per day today than ever before. But we think
we can do even better.

We've learned a lot about developers and development environments over the past six
years:

* Development environments are similar: All Ruby development environments look
alike, all PHP development environments look alike, etc. There isn't much deviation
between two development environments for the same language or framework. The
Vagrantfile requires users to configure these environments for every project, rather
than having it abstracted away.

* Developers want to deploy: After developing an application, the next step is to
deploy! "vagrant up" to production has been a feature request for years. Production
environments look very different from development: load balancers, firewalls,
routing concerns, new configurations, etc. Unfortunately, the Vagrantfile isn't a good
format to describe this information

Microservices are difficult: More and more applications are being written in a
service oriented way. Modeling these services for development and deploy is
difficult. The Vagrantfile puts the burden of installing/configuring every service onto

https://www.hashicorp.com/blog/otto.htm]
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(Micro)service architectures provide unique
benefits at the cost of increased (essential)
complexity.
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If you can't build a monolith,
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microservices are the answer?

Distributed big balls of mud

If you can't build a monolith, what makes you think microservices are the answer?

If you want evidence that the software development industry is susceptible to fashion, just go and take a look at all of the hype
around microservices. It's everywhere! For some people microservices is "the next big thing", whereas for others it's simply a
lightweight evolution of the big SOAP service-oriented architectures that we saw 10 years ago "done right". | do like a lot of what
the current microservice architectures are doing, but it's by no means a silver bullet. Okay, | know that sounds obvious, but | think

many people are jumping on them for the wrong reason.

~ Monolit/uc. Service-based N

www.codingthearchitecture.com/2014/07/06/distributed_big_balls_of_mud.html
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case study: RealEstate.com.au
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Delivery services

Provides tooling and consulting to squads
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Continuous Delivery

Teams with low efferent coupling
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