ThoughtWorks

Continuous Delivery Workshop

cie[ptc;) menlk
Fvipimes

CONTINUOUS
DELIVERY

Jez HUMBLE, 3» _ Th0ughtW0rkS®
NEAL FORD

DaAviD FARLEY ?%

Director / Software Architect / Meme Wrangler

N Workshop materials created by Jez Humble, Martin Fowler, Tom Sulston, & Neal Ford

deployment pipelines

€

tests, synergistic practices,
incremental deployment

data & infrastructure

Who are You?

Manager

Operations

a

Developer

* Agile Transformation

Manager

, §

< X

Operations

DBA

Developer ‘1 ‘

Continuous Delivery

Manager

, §

DBA

Operations

> o« ' ‘:‘ a
gsii o ’
¥ 4 |
>, e
N gz ivdlly
i g
- 0

*® No matter how it looks at first, it's
always a people problem®?®

The Dangers of Silos

. The Tragedy of the Commons

Release Cadence

e 00 DevOps Kata - Single Line of Code - devopsy >
@ [+ l|§| devopsy.com/blog/2013/08/16/devops-kata-single-line-of-code/ ¢ @

Blog Archives About me

About me

Max Lincoln
Continuous Delivery at

ThoughtWorks
Recife, Brazil

DevOps Kata - Single Line
of Code

Recent Posts
- - - - - i i
Code Kata is an attempt to bring this element of practice to DevOos Kata - Jingle Line of Code
- - . H H H
software development. A kata is an exercise in karate where TR s et 0L

hammer) - an experience report

you repeat a form many, many times, making little
improvements in each. The intent behind code kata is

Is 118 equal to 90, 810, or 8A?

Octopress on Cloud9

similar.
Conditional Traversals with Gremlin
Dave Thomas — Code Kata .
GitHub Repos
fog-samples

Since DevOps is a broad topic, it can be difficult to determine if a team has
C enough skills and is doing enough knowledge sharing to keep the Bus_ github archive graphs - '
Factor low. It can also be difficult for someone interested in learning to Jdu:t:playmg DU With github Srchive
know where to start. I thought I’d try to brainstorm some DevOps katas to

give people challenges to learn and refine their skills. If you’re worried
about vour bus factor. challenee less exnerienced team members to do foq filters

devopsy. com/blog/201 3/08/16/devops-kata-single-line-of-code/| reg o

qithubarchive

foq forest

Continuous Delivery Metrics
lead time

the time between the initiation and completion
of a production process.
cycle tine

the total elapsed time to move a unit of work from
the beginning to the end of a physical process

Continuous Inteqgration

Integration early and often.

Fveryone checks into trunk at least once a day.

Daln

Bring the pain forward.,

eaqger vs, late

time

Continuous Integration

Integration early and often.

Fveryone checks into trunk at least once a day.

Integration

Integration early and often.

Fveryone checks into trunk at least once a day.

Continuous Beptovmes«&

Deploy as the final stage of continuous integration.

Integration

Integration early and often.

Fveryone checks into trunk at least once a day.

Beptovmem&

Deploy as the final stage of continuous integration.

Continuous ‘bei.i,verj

Software is always in a deployable state.

2005

Desktop
Browser

JavaScript: JQuery

I HTML, CSS,JS

ISQL

Reporting
Services

-
S
|

Microsoft

2016

Native
ios

Desktop
Browser

Responsive
Web on Tablet

Native
Android

JavaScript:
20+ Frameworks
JSON
One-Page JSON, HTML, JSON
GSS, JS

JavaScript
App

«— JSON, HTML,
Backend for CSS,Js
Frontend

/ o
Microservice Microservice

NET Microservice Java

Ruby
—
Graph DB
N/

A

AN

Bulk Load
\ - - A/Event Stream

Extract,

Tra nSf:JV / \

Machine Bl/Reporting
Learning Predictive
Modeling

/

Customer
Insights

Modern
software
Is complex!

https://www.thoOghtworks.com/insights/blog/impIications—tech—stack—compIexity-executives

Agile 101

b §
e 9 9

Centralized QA IT Operations

id® Sy o) G [—

Customer

_

Iteration 0 : 1 : 2 :

|
34 The "last mile"

Continuous Delivery

) &
e 9 9

Centralized QA IT Operations

- »—-}—

lteration o, 1, 2, 3, 4
Customer

P

Delivery team

P

Customer

The "last mile"

Constant flow of new features into pro

always
. | R . production
business needs » operational constraints — J

Potential Hindrances

Lead time is too long

Last mile is too painful

‘ Poor collaboration

Identify & remove friction

Continuous Integration

-ast, automated feedback
on the correctness of your
application every time there
'S a change to code

O

Deployment Pipeline

—ast, automated feedback
on the Fraduc&wm readiness

fyour application every

time there is a change — to
code, infrastructure Or

confiquration

Deployment Pipelines

Prerequisites
AVAY

VaAVA : . .
<7, contlnuous:\tegrat|on
VaAVA ‘
comprehensive ‘d ~
configuration management ‘

4

excellent automated testing at all levels

commit Stage

source code
commit tests

‘Starts building a release candidate

f it fails, fix it immediately/§

Pipeline Construction

i user |
lacceptance test {ll

artifact
esposito

functional
test

commit

artifact
esposito

= [—— ne

o
|
i
h
5.2
artifact
espository

increasing confidence in production readiness

‘ . Pipeline stages = feedback

‘ ? opportunities

UAT Stage

metadata

i
Versi acceptance tests
ersion .
contol | o ration data. —
| test reports Artifact
repository

End-to-end tests in production-like
2 environment

D Triggered when upstream stage passes

.First DevOps-centric build

Manual Stage

N
I

Version | deployment scripts [\
control | configuration data

Later stages >

: : test reports i
Configure environment | > meta dzta Artifact
4, Deploy and smoke test &, repository
" Tear down on request ¥

Artifact
repository

—

binaries

o UAT, staging, integration, production, ...

Push versus Pull model@

Deployments self-serviced through
DUSh-button process ‘

A
Env & Env &

Source i
app Version control app

code . .
config config

UAT
Testers Configure environment >
L . = 4_
Self-service Smoke test
Developers deployments
See code metrics
v and test failures v ‘ ——————————
mmit st A tan t Capacity stage
Co stage cceptance stage pacity stag q
Compile 1 Con
Commit tests ~—Replaibir - ——DBeg
Assemble
Code analysis Acceptance tests Run capacity tests
S —— T —
' Production
Operations ' e — -~] >
perform Configure environment |
push-button selditl LS '
reports
binaries reports reports
y metadata binaries | ymetadata binaries] T Y metadata

Artifact repository

Machinery

continuous integration ++

e

2\ 4
-
)

» 30

www.thoughtworks.com/products/go-continuous-delivery

Jenkins

Go Server

Go Agents -

Environments

@) User Acceptance

nl "7 Deploy multiple

7’ J
e
7 i

//”

4

N T—

Performance cloud

p.
‘&) Performance

| /| Run performance lests

\ i | Deploy multiple
! Run smoke lests

(4 ",.—;.‘
_\\\

V4

(]

4
/

(=4

v“) Production

Code moves from check-in tests into UAT

S ssnnnnnnd)

Pipeline

compile + unit functional test
test stage stage

UAT stage

UAT job

--- Approval
+ Can be automatic or manual
.
Stage Job
+ Stages run consecutively * Jobs run concurrently within a stage

+ Each stage is triggered automatically by the - If a job fails, the stage it is in fails
successful completion of the previous stage * Each job plan runs one or more
+ Can also be triggered manually targets (ant, nant, or ecec)
* Jobs can run in Parallel within a stage
if you have multiple agents

Pipelines “

113 MyApplication <]

I! my-app—web<] | my-app-middleware " my-functional-tests

Label: 39 <;] Label: 55 Label: 38-54
B3 Compare | Changes w By Compare | Changes w <:| |i> B3 Compare | Changes w

(Triggered by aantony 14 days ago) (Triggered by anushr 3 minutes ago) (Triggered by changes 8 days ago)
Passed: analyze i> Building: build Passed: functional-tests
¢> Previously: il Passed
P+ || || > P+ |

o400

|#»» acceptance Overview IR

Label: 2.1.0.5447 JOES
ok 210 w Failed: 6

CHANGES w Il firefox-1
(Triggered by changes 44 minutes ago) Il firefox-2
Failed: twist
Bl firefox-3
[l firefox-4
. firefox-5
4 p* n

narayan-firefox/13/twist/1/firefox-1 job | failed

SCHEDULED ON: 2010-05-31T18:26:04+05:30 COMPLETED ON: 2010-05-31719:03:36+05:30 more.,
DURATION: 00:36:32 AGENT: birstdcrsuat02 thoughtworks.com (ip:10.4.8.2)
BUILD CAUSE: modified by narayan

JOB HISTORY
& Link to this tab
i -firefox/1 3twist/ /firefox-1
v Failed tests L St st
-~
Tests run: 10 , Fatlures: 2 , Not run: 0 , Time: 1545.121 seconds. M narayan-firefox/1 2twist/1 /firefox-1
about 1 month ago
Failwe ArtifactUploadFetch.scn B narayan-frefox/1 1wist/1 ffrefox-1
Fallure AgentsUIScreen.scn about 1 month ago
Unit Test Failure and Error Details (2) M narayan-firefox/1 Oftwist/1 /firefox-1
)) about 1 month ago
Test: ArtifactUploadFetch.scn
Type: Failure E3 narayan-firefox/9ftwist/3/firefox-1

about 1 month ago

Message: wait timed out after THREE_MINUTES for: Wait for pipline: [pipeline-artifa

Pipeline Activity

dev dist smoke-firefox dist-all dist-sol smoke-ie

2.0.0.5125

revision: bdc71353bc0. —— —— — — S S

about 6 hours ago
modified by Jake & RRR &
JJ & PS & Yogi & Anush

2.0.0.5124
revision: 25fcfb492d54...
1 day ago

modified by ShilpaG &
Jake

—_— S —_— [— B

Mercurial - trunk - hitps:Jccepalr:****** @fmtstdscm01.thoughtworks.com/go X

#4257 - reverting the confirmation popup
ShilpaG & Jake added for pipaline trigger in pipeline 25/cib49205406001cb38390108400404 700506/
actiity

smoke-le

Git - twist - go @10.4.3.137Jrepo/go_qa

unknown Added one more fall check for UAT
<vgarp@.corporate.thoughtworks.com> upgrades.

14bbSf3fd 5356404 5200914 dc T IefS85H0ef 1911
smoke-le

2.0.0.5122

revision: 2b006920224b... N »»
1 day ago

modified by ShilpaG &

Jake

2.0.0.5121

ravision: 15a2109718d6... —— — — O — B)

4 days ago
modified by Yogi, PS

[s
analysis

analysis

analysis

OISO ok 108" Lo

..... -

Integration Pipeline in Go CD

integration ﬂ Press Esc to exit full screen mode.

integration

s catalog
o gt
q .
https.//github.con
rworees amtiTacts an
L3
. orders
© git
hips.//github.comy
riager o
wabapp

Integration Pipeline in Go CD

iMegrabon
catalog

uat
s]
2 \ 1 ’
‘ N0 3 g
for gny of the direct upstrean
A
ardars parformance
- N ANy f thia & '
for any of the direct upstrean
"?;ﬂ N y ~ .
wabapp production
< N ancy [this pips N
for any of the direct upstrean

000 Go - Continuous Delivery software @

SRON

Continuous Delivery Features Download Resources Contribute Submit Issue Blog

Automate and streamline the build-test-release cycle for
worry-free, continuous delivery of your product.

@_m._;—m.
Bod 2 | e

—

Stogng || Prokution |

FAN OUT FAN N

Code
(B s [Mee® |

www.go.cd

Increasing confidence in build's production readiness

Environments become more production-like

Commit stage
Compile
Unit test
Analysis

Build installers
e ——

Acceptance
test stage

User
acceptance
testing

Performance
testing

O

Production

Faster feedback

insufficient parallelization

Commit stage
Compile
Unit test
Analysis

Build installers

Acceptance
test stage

User
acceptance
testing

Pipeline Anti-patterns

i

1

b

| T ——

Performance
testing

X

Production

tdeal bFime: < 10 minulbes

Pipeline Anti-patterns

insufficient parallelization

User
acceptance
testing

Commit stage
Compile
Unit test

test stage

Performance
testing

X

Production

Mingle:
- 32%2 test

/ &3

Insufficient Parallelization

make your

reduce t

Heuristic:

nipeline wide, not long

ne number of stages as much

as possible
parallelize each stage as much as you

Can

create more stages if necessary to (
optimize feedback 7 d

N

Pipeline Anti-patterns

| > Automatic approval

Manual approval

Commit stage Aocszig;aence |
(automated) (automated) I
E:> Automatic approval
Manual approval
Commit stage Aoitigg;nce I
(automated) (automated) |
— P—
Exploratory
testing
- (manual)

inflexible workflow

Exploratory |

. Searg Producton
(manual) I
Poducion
pipeline fans out
jramsdi as soon as ik
malees sense ko
(manual)

do so

The Scientific Method

OHAE,E
' experi,

evai.ub b

TR Al Wiy Fimotins Sois |
s 0

CONTINUOUS

Principles

automate almost everything [P
build, deploy, test, release

manual testing, approvals

£
‘ , /

a;Ec)mo&a\bte

high-value,
humans ov\bj

T Ao Wity Simatino Foics |

CONTINUOUS

P o ® I DELIVERY
| InCI es JEz HUMBLE, —
Davi

D FARLEY PI‘

< ® keep everything you need to build,

= deploy, test, & release in version control

e database creation,

* requirements documents upgrade, downgrade, and

* test scripts initialization scripts

e automated test cases application stack

* network configuration configuration scripts
scripts * libraries

* technical documentation » deployment scripts

e tool chains

When You Hire a New
Developer...

J M\ X\
N X\ X
* 5 \ X \
X\ X

Infrastructure Consistency

NC
Chef s\

@ PUPRE!

ANSIBLE

boxen.github.com

Continuous Delivery Maturity Model

release 1 release every 1 release every o : 10 releases 100 releases
a daily release
frequency{ 100 days 10 days Y a day a day
examples { C Many Enterprises >: Faceboo"\';‘:-Qacebook @
' : 2011 : 2013

Trunk Based Development (TBD)
+ Branch for Release
(point releases from same branch)

branch Develop on release
model branches: ! ! b= Pull Requests to a Release branch. =i
b= Merge somewhere =={ ! ' : :
after release : TBD + Release i : :
A from trunk : :
o = = o= = Formal QA Dept = = = = = = | | ! :
QA : ! 2 : Developers QA : 2
role Thorough Expedited : their own changes ' 2
b= Release =i Release m—)f : | :
Certification Certification : : :
. i n Automated Functional Tests n |
QA 1 1 1 1 1
auto- | | i Speedy & Thorough Functional Tests —|—|
mation : : : ' !
' b= 'Eat Your Own Dogfood' usage of app . i
: : ; ; |
} : : Toggles for tuning the production stack : |
Toggles : ! ' | :
| b= Toggles for hiding functionality that is not ready yet e pe—f
: : : : :
| Delta Scripts for DBs | : :
Roll- : . Practiced Rollbacks i : :
backs? - !
|

=t Tiers are forwards/ackwards compatible by design =]
I ' '

http://paulhammant.com/2013/03/13/facebook-tbd-take-2/

Continuous Delivery Maturity Model

1: initial

delivery focus characteristics result

A few smart There is an ad hoc release delivery Ad hoc
process
Peop|e * Teams rely mainly on manual deIO'OymentS
perfo rming testing after development is
: complete to find defects.
heroics * System integration is painful and

happens after development on a
module is completed.

* Provisioning production-like
integrated testing environments is
expensive and manual.

* Deployment process is manual.
* Developers, testers, operations,
and management have goals that
bring them into conflict.

» Change management is ad hoc or
heavyweight and often circumvented
or ignored.

Continuous Delivery Maturity Model

2: managed

delivery focus characteristics result

Time-boxed There is an adaptive delivery process. Planned release:

* Clear product ownership and chain of : :
releases (the team responsibility are in place. Release time box is

sets a release date . Change management controls are well defIHEd, but

and manages to it) ~ implemented, including a process to duration from idea
detect unauthorized changes with inception to

consequences defined. . _
* Business participates fully and production release is

regularly in development activities and greater than business
decisions related to delivery. need
* There is some automated acceptance '
testing.
* Production-like testing environments
are available for projects early on.
* There is some scripting to reliably and
repeatedly configure environments and
build packages from version control.
* Teams work in iterations of one
month or less and showcase integrated

Continuous Delivery Maturity Model
3: defined

delivery focus characteristics result

Regular releases Teams build quality into release Regular release
over a defined process. cadence: Release time
period with interim » Teams practice trunk-based box is well defined, but
milestone builds development with continuous duration from idea
integration of all changes. inception to

* There are enough automated tests : :
that critical defects are detected and production relea.se 'S
prevented fast and automatically, ~ greater than business
* Provisioning of integrated testing need.
environments is fast and mostly
automated.
* No work is considered done until it
has passing automated unit and
acceptance tests associated with it.
* Testers are not primarily focused on
regression testing. Database changes
are versioned and scripted.

Continuous Delivery Maturity Model

4. quantitatively managed

delivery focus characteristics result

Release on Delivery teams prioritize keeping = Release on demand:
code trunk deployable over doing ' gqft\ware is always in a
demand new work. releasable state.

* Deployment pipeline automatically Release time box is
rejects bad changes from version | Well defined and equal
control. to, or less than,
* Cross-functional end-to-end business need.
product- centric teams manage
products throughout life cycle.
* Comprehensive automated test
suites are created through TDD/
ATDD and maintained by
developers and testers working
together.
* Teams monitor and manage work
in process and deliver work in small
batches.

Continuous Delivery Maturity Model
5: optimizing

delivery focus characteristics result

HypOthESiS- Tgams focus on optimizing cycle Continuous
time to learn from customers.
driven deployment
: « All new requirements describe capability enables
delive ry how the value of the feature will P)’
business
be measured. . .
* Product teams are responsible innovation/

for implemgnting metrics to experimentation
gather this data through

techniques such as A/B testing.

* Systems are architected with
continuous deployment in mind,
supporting patterns such as dark

launching to decouple deployment
from release.
* Database changes are decoupled
from application deployments.

Demonstration trumps
discussion,

&K
/A

8 »

Il OREILLY

A
vy

ThoughtWorks

| NEAL FORD
Presentation

PATTERNS Fctlonal
SRS Thinking

PARADIGM OVIR SINTAX

Director / Software Architect / Meme Wrangler

NEAL FORD | MATTHEW MCCULLOUGH | NATHANIEL SCHUTTA

Neal Ford

ART

JAVA WEB, 477

DEVELOPMENT =

Clojure Functior;al Thinking:
Inside Out Functional

programming using
Java, Clojure & Scala

Engmeering
Practices

Neal Ford

O'REILLY"

SOFTWARE ARCHITECTURE SERIES

—— _—

OREILLY OREILLY OREILLY OREILLY

SOFTWARE ARCHITECTURE SERIES SOFTWARE ARCHITECTURE SERIES SOFI’WARE ARCHITECTURE SERIES ‘ SOFTWARE ARCHITECTURE SERIES

Stuart Halloway
& Neal Ford Neal Ford

OREILLY OREILLY

SOFTWARE ARCHITECTURE SERIES SOFTWARE ARCHITECTURE SERIES

Software
Architecture
Fundamentals
Understanding

the Basics

Fundamentals, Patterns, AntiPatterns,
Soft Skills, Continuous Delivery,
and Code Analysis Tools

Neal Ford, Mark Richards
VIDEO

Software
Architecture
Fundamentals
Beyond the Basics

Tradeoffs, Abstraction,
Comparing Architectures,
Integration and Enterprise
Architecture, Emergent Design

Neal Ford, Mark Richards
VIDEO

Software
Architecture
Fundamentals
Soft Skills

Problem Solving, Decision
Making, Refactoring,
Productivity & Communications

Neal Ford, Mark Richards
VIDEO

Software
Architecture
Fundamentals
People Skills

Leadership, Negotiation,
Meetings, Working with People,
and Building a Tech Radar

Neal Ford, Mark Richards
VIDEO

Software
Architecture
Fundamentals
Service-Based
Architectures

Structure, Engineering
Practices, and Migration

Neal Ford, Mark Richards
VIDEO

Engineering
Practices for
Continuous

Delivery

Neal Ford

VIDEO

