
Continuous Delivery Workshop

Workshop materials created by Jez Humble, Martin Fowler, Tom Sulston, & Neal Ford

deployment
 pipelines

data & infrastructure

tests, synergistic practices,
incremental deployment

deployment pipelines

Who are You?

QA

DBA

Developer

Manager

Operations

UX

BA

Agile Transformation

QA

DBA

Developer

Manager

Operations

UX

BA

Continuous Delivery

QA

DBA

Developer

Manager

Operations

UX

BA

No matter how it looks at first, it's
always a people problem.

The Dangers of Silos

The Tragedy of the Commons

Release Cadence

Release Cadence

“How long would it take your organization to
deploy a change that involves just one single

line of code?”

Mary Poppendieck Tom Poppendieck

“Can you do this on a repeatable, reliable basis?”

devopsy.com/blog/2013/08/16/devops-kata-single-line-of-code/

Continuous Delivery Metrics
lead time

cycle time

the time between the initiation and completion
of a production process.

the total elapsed time to move a unit of work from
the beginning to the end of a physical process

Continuous Integration
Integration early and often.

Everyone checks into trunk at least once a day.

0

300

600

900

1200

pa
in

time

Bring the pain forward.

eager vs. late

Continuous Integration
Integration early and often.

Everyone checks into trunk at least once a day.

Continuous

Integration
Integration early and often.

Everyone checks into trunk at least once a day.

Deployment

Deploy as the final stage of continuous integration.

Continuous

Integration
Integration early and often.

Everyone checks into trunk at least once a day.

Deployment

Deploy as the final stage of continuous integration.

Delivery
Software is always in a deployable state.

Modern
software

is complex!
https://www.thoughtworks.com/insights/blog/implications-tech-stack-complexity-executives

Agile 101

Iteration 0 1 2 3 4

Analysis + Design

Development

Testing + Showcase

Integration + QA Release and operation

Customer

Centralized QA IT Operations

"Agile" team

The "last mile"

Continuous Delivery

Iteration 0 1 2 3 4

Analysis + Design

Development

Testing + Showcase

Integration + QA Release and operation

Customer

Centralized QA IT Operations

"Agile" team

The "last mile"

Customer

Delivery team
Constant flow of new features into production always

production
readybusiness needs > operational constraints

Potential Hindrances

Lead time is too long

Last mile is too painful

Poor collaboration

Identify & remove friction

Continuous Integration

Fast, automated feedback
on the correctness of your
application every time there
is a change to code

Deployment Pipeline

Fast, automated feedback
on the production readiness
of your application every
time there is a change — to
code, infrastructure, or
configuration

production readiness

code infrastructure
configuration

Deployment Pipelines

Prerequisites

excellent automated testing at all levels

comprehensive
configuration management

continuous integration

commit Stage
Commit stage

Compile
Unit test

Assemble
Code analysis

source code
commit tests
build scripts

deployable binaries
test reports
metadata

Version
control

Artifact
repository

Run against each check-in

Starts building a release candidate

If it fails, fix it immediately

Pipeline Construction
commit functional

test
user

acceptance test
staging …

increasing confidence in production readiness

artifact
respository

artifact
respository

artifact
respository

artifact
respository

Pipeline stages = feedback
opportunities

UAT Stage
Acceptance test stage

Configure environment
Deploy and smoke test

Acceptance test
Tear down

acceptance tests
deployment scripts
configuration data test reports

metadata

Version
control

Artifact
repository

binariesArtifact
repository

End-to-end tests in production-like
environment

Triggered when upstream stage passes

First DevOps-centric build

Manual Stage

UAT, staging, integration, production, …

Push versus Pull model

Deployments self-serviced through
push-button process

Later stages

Configure environment
Deploy and smoke test
Tear down on request

deployment scripts
configuration data

test reports
metadata

Version
control

Artifact
repository

binariesArtifact
repository

Artifact repository

Source
code

Commit stage

Compile
Commit tests

Assemble
Code analysis

reports
binaries
metadata

Acceptance stage

Configure environment
Deploy binaries

Smoke test
Acceptance tests

Capacity stage

Configure environment
Deploy binaries

Smoke test
Run capacity tests

UAT

Configure environment
Deploy binaries

Smoke test

Env &
app

config

reports
metadatabinaries

Production

Configure environment
Deploy binaries

Smoke test

Env &
app

config

binaries
reports
metadata

Operations
perform

push-button
releases

Testers
Self-service
deploymentsDevelopers

See code metrics
and test failures

Version control

Machinery

www.thoughtworks.com/products/go-continuous-delivery

continuous integration ++

Integration Pipeline in Go CD

Integration Pipeline in Go CD

www.go.cd

Commit stage
Compile
Unit test
Analysis

Build installers

Acceptance
test stage

User
acceptance

testing

Performance
testing

Production

Increasing confidence in build's production readiness

Environments become more production-like

Faster feedback

Pipeline Anti-patterns

Commit stage
Compile
Unit test
Analysis

Build installers

Acceptance
test stage

User
acceptance

testing

Performance
testing

Production

Increasing confidence in build's production readiness

Environments become more production-like

Faster feedback

insufficient parallelization

ideal time: < 10 minutes

Pipeline Anti-patterns

Commit stage
Compile
Unit test
Analysis

Build installers

Acceptance
test stage

User
acceptance

testing

Performance
testing

Production

Increasing confidence in build's production readiness

Environments become more production-like

Faster feedback

insufficient parallelization

Mingle:
3,282 test / 53
computers = ~1 hour

parallelize each stage as much as you
can

make your pipeline wide, not long

reduce the number of stages as much
as possible

create more stages if necessary to
optimize feedback

Insufficient Parallelization
Heuristic:

Pipeline Anti-patterns

inflexible workflow

pipeline fans out
as soon as it

makes sense to
do so

The Scientific Method

hypothesize

experiment

evaluate

manual testing, approvals

automate almost everything

build, deploy, test, release

Principles

automatable high-value,
humans only

keep everything you need to build,
deploy, test, & release in version control

• database creation,
upgrade, downgrade, and
initialization scripts

• application stack
configuration scripts

• libraries
• deployment scripts
• tool chains

• requirements documents
• test scripts
• automated test cases
• network configuration

scripts
• technical documentation

Principles

When You Hire a New
Developer…

Infrastructure Consistency

boxen.github.com

Continuous Delivery Maturity Model

http://paulhammant.com/2013/03/13/facebook-tbd-take-2/

delivery focus characteristics result
A few smart

people
performing

heroics

There is an ad hoc release delivery
process

• Teams rely mainly on manual
testing after development is
complete to find defects.

• System integration is painful and
happens after development on a

module is completed.
• Provisioning production-like

integrated testing environments is
expensive and manual.

• Deployment process is manual.
• Developers, testers, operations,
and management have goals that

bring them into conflict.
• Change management is ad hoc or
heavyweight and often circumvented

or ignored.

Ad hoc
deployments

1: initial

Continuous Delivery Maturity Model

delivery focus characteristics result
Time-boxed

releases (the team
sets a release date
and manages to it)

There is an adaptive delivery process.
• Clear product ownership and chain of

responsibility are in place.
• Change management controls are
implemented, including a process to
detect unauthorized changes with

consequences defined.
• Business participates fully and

regularly in development activities and
decisions related to delivery.

• There is some automated acceptance
testing.

• Production-like testing environments
are available for projects early on.

• There is some scripting to reliably and
repeatedly configure environments and
build packages from version control.

• Teams work in iterations of one
month or less and showcase integrated

Planned release:
Release time box is

well defined, but
duration from idea

inception to
production release is
greater than business

need.

2: managed

Continuous Delivery Maturity Model

delivery focus characteristics result
Regular releases
over a defined

period with interim
milestone builds

Teams build quality into release
process.

• Teams practice trunk-based
development with continuous

integration of all changes.
• There are enough automated tests
that critical defects are detected and

prevented fast and automatically.
• Provisioning of integrated testing

environments is fast and mostly
automated.

• No work is considered done until it
has passing automated unit and

acceptance tests associated with it.
• Testers are not primarily focused on
regression testing. Database changes

are versioned and scripted.

Regular release
cadence: Release time
box is well defined, but

duration from idea
inception to

production release is
greater than business

need.

3: defined

Continuous Delivery Maturity Model

delivery focus characteristics result

Release on
demand

Delivery teams prioritize keeping
code trunk deployable over doing

new work.

• Deployment pipeline automatically
rejects bad changes from version

control.
• Cross-functional end-to-end
product- centric teams manage
products throughout life cycle.

• Comprehensive automated test
suites are created through TDD/

ATDD and maintained by
developers and testers working

together.
• Teams monitor and manage work
in process and deliver work in small

batches.

Release on demand:
Software is always in a

releasable state.
Release time box is

well defined and equal
to, or less than,
business need.

4: quantitatively managed

Continuous Delivery Maturity Model

delivery focus characteristics result

Hypothesis-
driven

delivery

Teams focus on optimizing cycle
time to learn from customers.

• All new requirements describe
how the value of the feature will

be measured.
• Product teams are responsible

for implementing metrics to
gather this data through

techniques such as A/B testing.
• Systems are architected with

continuous deployment in mind,
supporting patterns such as dark

launching to decouple deployment
from release.

• Database changes are decoupled
from application deployments.

Continuous
deployment

capability enables
business

innovation/
experimentation

5: optimizing

Continuous Delivery Maturity Model

Demonstration trumps
discussion.

nealford.com

@neal4d

