ThoughtWorks

Continuous Delivery Workshop

T s Wty Sipmotioie Forins [0

Tests, ngerg&s&w
e Prac

lces, &

CONTINUOUS | ’DQPLKZ}?MQME
DELIVERY

Jez HUMBLE, 3~ = Th()ughtWOI’kS®

Davip FARLEY oo
?% NEAL FORD

Director / Software Architect / Meme Wrangler

N Workshop materials created by Jez Humble, Martin Fowler, Tom Sulston, & Neal Ford

deployment pipelines

€

tests, synergistic practices,
incremental deployment

data & infrastructure

Testing

T@S&EMS Quadrants

business facing

automated manual
oo showecases
E usability g
© a
% exploratory | =
o IS
= e}
= automated A
(@R
%

automated manual/automated

technology facing

source: Brian Marrick, Continuous Delivery (Humble/Farley), with modifications

T@S%ihg Quadrants

business facing

automatead manual
&
= .
= =
© Ie)
> :
a =
= o}
S automated A
= [
’ nonfunctional acceptance/
quality of service
automatead | manual/automated |

technology facing

source: Brian Marrick, Continuous Delivery (Humble/Farley), with modifications

T@S&ihg Quadrants

business facing

automated manual
oV0)
C
- o
- =
= =
> 5
|-
Q =
= e}
= automated X
Q_ —t
D)
(V)

[]
unik
automated manual/automated

technology facing

source: Brian Marrick, Continuous Delivery (Humble/Farley), with modifications

uik Testing

prefer test-driven to test-after development ‘

prefer pragmatism over dogmatic metrics

& A
AR

optimize for the target audience

use sharp tools

gD
how much time?

Common Anti-pattern

mixed unit/
functional tests

Fast/Slow Tests

mixed unilt/
functional tests

functional

masaaesssenanl)

wunik

Fast/Slow Tests Redux

mixed unit/
functional tests

g P

Terminal — zsh —

ruby

“E e e B

Finished in 41.353372 seconds.

8996 tests, 12746 assertions, @ failures, @ errors

nished in 248.573856 seconds.

3964 tests, 8288 assertions, @ failures, @ errors

®00 Infinitest
% | @ http: / /www.infinitest.org/ ~ Q-

finitest

Main For Eclipse For Intelli) Contact

Infinitest is a continuous test runner for JUnit tests. Whenever you change a class, Infinitest
runs your tests for you. It selects tests intelligently, and only runs the ones you need. It reports
unit test failures like compiler errors, and provides additional information that helps you write

[»

code.google.com/p/infinitest/

GClobal Libraries

R = RS

Jn

% JRuby

Spring
& Web

I = BRI

ol JPA !

(& JavaEE Application

¥ WebServices Client
—

sers /nealford/dev/java/intellij/conf_smallthings_primes &

urce Folders

BrC me

it Source Folders

[est me

= - (llodule ‘conf_smallthings_primes’

— Proi i N

Project Settin il | conf_smallthings_primes

Project Ca Module
Modules | Facet (%) Sources Paths [@ Dependencies |
Libraries 4 EB
Facets & Grails 1guage level (effective on project reload): | <Use project language level> e
‘Platform Settil | @ Croovy
JDKs # Hibernate Add Content Root B8 Excluded BB Sources B Test Sources

¥ [jUsers/nealford /dev/java/intellij/conf_smallthings_primes
» C3out
» C3src
b C3test

References to resources outside module file directory: () Absolute *) Relative

@

H (Cancel) (Apply W
P

LQ_O_ O lé conf_smallthings_primes - [/Users/nealford/dev/java/intellij/conf_smallthings_primes] - [conf_smallthings_primes] - .../tes... ‘

E@\S@ ¥ B3 @'Q@s’@@ 84 | [& FactorsFinderTest v [[&8 | & 2 | 9 | @ =
4 @Fj conf_smallthings_primes # test 1[5 com #[57 nealford 75 smallthings 50 primes (& FactorsFinderTest >
o =iP# 5] * (@ Finder.java | [© FactorsFinder.java - | (@ FactorsFinderTestjava « |
9 B T e GO D S8 T . ®
oIS e T & F H 9§ = 2 N
o (3 [+ import 3 s
|| Vi : Proj o (|13 .)
;: View as: [E] i Q 16 ;?Suppresswarnings({"ugchecked"}) 3
v f&;éconf_smallthings_primes§ ig §p®11c class FactorsFinderTest { g
M v =7 conf_smallthings_primes (/Users/nealford/dev/jal |19) ETest public void is_factor_the_old way() { B
5 — 20 FactorsFinder ff = new FactorsFinder(10); =5
v > src 21 assertTrue(ff.isFactor(l)); e
2 v B test 22 a :
2 = — 23 &
~ v |57 com.nealford.smallthings.primes 24 ©J €Test public void is_factor() { Z
G Ak : 25 FactorsFinder £ = new FactorsFinder(25); L
& £ FactorsFinderTest 26 assertFalse(f.isFactor(4)); ' -
— Il conf_smalithings_primes.iml 27 assertTrue(f.isFactor(5)); =
. . . 28 @ assertTrue(f.isFactor(12)); ==
I conf_smalithings_primes.ipr 29 ¥ } ==
I conf_smalithings_primes.iws 30) 2
)) 31) @Test public void factors_for_ the_old way() { .
» [ilh Libraries 32 FactorsFinder f = new FactorsFinder(28); o
33 Set<Integer> expected = y 5
34 new HashSet<Integer>(Arrays.asList(l, 28, 2,- =
a5 : assertfquals(expected, f.factors ; X L
<« & - < » « » & i) < » -
§6%
EIEREE . | 2
[Results Logging ! <
: =
v /A com.nealford.smallthings.primes.FactorsFinderTest:28 - AssertionError() 3
/\ com.nealford.smallthings.primes.FactorsFinderTest.is_factor '
r
2] 0 (S
o]
2 6: TODO | [@ Infinitest_conf_smallthings_primes | | %5 Web Preview |
Compilation completed successfully 28:36 Insert MacRoman £ Default @m y

T@.S%ELMS Quadrants

business facing

automated manual
y o ’
(@
S - .
- > =
@ i ®)
%O - E E- %
ot LA QSY‘Q LOW contracts T
= heartbeats | £
S automated O
Q.
D)
wnm

automated manual/automated

technology facing plum

source: Brian Marrick, Continuous Delivery (Humble/Farley), with modifications

T@S&ihg Quadrants

business facing

automated manual
functional

.| acceptance
.E
& O
= =
© O
> -
o §®)
5 S
= automated A
Q-
D)
(V)

automated manual/automated

technology facing

source: Brian Marrick, Continuous Delivery (Humble/Farley), with modifications

evolution of functional testing

» auto-generation of fixtures
@ » cross-platform for step

definitions D
BA/SME developer Cucumber

® ® 2ty B
~ :F
SUCCEEDING
WITH AGILE
My Cosen

Succeeding with Agile
(Mike Cohn)

Flavors of Functional Tests

/\

Flavors of Functional Tests

To Cuke or not to Cuke...

8

use when it provides useful
feedback to the target audience

http://www.thoughtworks.com/insights/blog/3-misconceptions-about-bdd

Ideal Software
Testing Pyramid

watirmelon.com Session

Based
Testing

Automated
GUI Tests

Automated APl Tests

Automated Integration Tests

Automated Component Tests

Automated Unit Tests

Anti-pattern: Ice-cream Cone

Automated
GUI Tests

Integration
Tests

Software Testing
Ice-cream Cone
Anti-Pattern

watirmelon.com

Cupcake Anti-pattern

ERLTTEL
Testers

EEEE T SRR

Automated
GUI Testers
Automated GUI Tests

S

(Software Testing}
: Cupcake
Developers Automated Unit Tests (anti-pattern)

L Fabio Pereira J

Automated Integration Tests
(API, Contract, Component)

http.//www.thoughtworks.com/insights/blog/introducing-software-testing-cupcake-anti-pattern

Avoiding Cupcakes

collaborate
work in sync
cross-role pair programming
story kickoff

test at the lowest level

merge teams
when possible

Automated
GUI Tests

Automated API| Tests

agree on goals /ssormtai misgraion T
and metrics

Automated Component Tests

Automated Unit Tests

Prefer journeys to stories.

»
.d »
»

Cownkinuous
Integration

machinery

Conbktinuous
Integration

develop Sl
workstation

continuous integration
server

version
control

continuous integration
server

version
control

31

continuous integration
server

version
control

32

continuous integration
server

version
control

33

everyone commiks
o Erunle of Lleast
once a c&av

34

&

Professor Plum

Mainline

Reverend Green

Feature Branching

Professor Plum P1-2

Mainline

G1-2

Reverend Green

Feature Branching

Professor Plum P1-2 P3-4

Mainline

Reverend Green

Feature Branching

copy /Fmsﬁe

reuse !

Professor Plum P1-2 P3-4

P3 P4 P5

P1-5
B1 B2
Mainline

B1

P1-5

G1-6

merqge

gl ' G1-6
amibush'

Feature Branching

G1 G2

G1-2

Reverend Green

e I ——

Erunie-based devetapmevx&

Professor Plum P1 P4
J)
Manne| | 1 | 1 | 1
P4-5
P1 2 P3
\ y \ y ‘ \ 4\ | \ M | \ y \ y

Continuous Integration removes the pain...

What is Trunk Based Development? - Paul Hammant's blog

Paul Hammant's bLOg Pages Archive Categories Tags Q N

What is Trunk Based Development?

What 1t Is... ApriL 5, 203

It is a branching model for software development. Historically, it has also been called "mainline” (see later). tfeq

38
It requires much more concentration and rigor, than making making a branch (on the shared source-control server) to suit a Source Control

whim. Though you could do it without Continuous Integration (Cl), as many open source projects do, for enterprise Branch by Abstraction, etc '
development you have to have Cl linked to the trunk, enforcing multiple aspects of “that commit was good". Trunk Based Development 2

In this article, I'm saying nothing about what developers do on their own workstations by way of ‘local’ branching to suit DevOPS ©
their hour by hour activities. This is all about the shared repo, where multiple developers integrate/merge their daily work
for the greater good :)

release
1.1.x
branches {

build + release = [B] a branch being cut | [M] merges

to prod
[] commit selected for cherry-pick

" ‘ (release engineer) originally
[C] commit (release engineer) made by a developer

¢! commit (developer)

Trunk Based Development (TBD) is where all developers (for a particular deployable unit) commit to one shared branch

paulhammant.com/2013/04/05/what-is-trunk-based-development/

Feature Branching

[[[\,

Big Scary Merge

e L

Continuous Integration

Professor Plum P1-2 P3-4

P P2 P5

Feature BranchB P1-5
Mainline o
P1-5
G1-6
G1 G2 | G3 G4 ™ G5 " G6
ALY VS, &Q
Z e G1-6

f
P5
Mainline
. G3 G4

Reverend Green

Continuous Integration

Feature Branching

[[[\,

Big Scary Mergel !

Untrusted
Contributors

e T e

Continuous Integration

Feature Branching

[[[\,

Big Scary Merge

Untrusted
Contributors

Cherry Picking

e T e

Continuous Integration

Config File

some.jsp

cature SRR

other.java

© 00 Togglz - Features flag for Java "
‘ ® | | €9 www.togglz.org o Reader o)

Feature Flags for the Java plattform

e Togglz

Downloads

Source Code What is it about?

Forums
Issue Tracker Togglz is an implementation of the Feature Toggles pattern for Java. Feature Toggles are a very common
agile development practices in the context of continuous deployment and delivery. The basic idea is to
associate a toggle with each new feature you are working on. This allows you to enable or disable these
features at application runtime, even for individual users.

stackoverflow.com
Continuous Integration

License
Want to learn more? Have a look at an usage example or check the quickstart guide.

REFERENCE
What's new? News
Getting Started

Javadocs 2.0.0.Final
Javadocs 1.1.0.Final
Javadocs 1.0.0.Final
Updating Notes

01-Jul-2013
Togglz 2.0.0.Final released

I'm very happy to announce the release of Togglz 2.0.0.Final. This new version is the result of many
months of hard work. Many core concepts of Togglz have been revised to provide much more flexibility.

The most noteworthy change in Togglz 2.0.0.Final is the new extendible feature activation mechanism that
DOCUMENTATION allows to implement custom strategies for activating features. Beside that there are many other updates.

www.togglz.org

public enum MyFeatures implements Feature {

@EnabledByDefault
@Label("First Feature™)
FEATURE_ONE,

@Label("Second Feature™)
FEATURE_TWO;

public boolean isActive() {
return FeatureContext.getFeatureManager().isActive(this);

}

public void someBusinessMethod() {

1f(MyFeatures.FEATURE_ONE.1isActive()) {
// do new exciting stuff here

}
[...]

@ApplicationScoped
public class DemoConfiguration implements TogglzConfig {

public Class<? extends Feature> getFeatureClass() {
return MyFeatures.class;

}

public StateRepository getStateRepository() {
return new FileBasedStateRepository(new File("/tmp/features.properties™));

}

public UserProvider getUserProvider() {
return new ServletUserProvider();

}

< Togglz x

o (& @ | [localhost:8080/togglz-demo/togglz/index *] =

Togglz

All Features Performance Usability

Feature Status Strategy Actions

First Feature 0 i§}
Owner: chkal

Second Feature @ O Gradual rollout {é}
Owner: john Percentage: 10

Issue: TOGGLZ-134

Third Feature @ O Users by name {é}
Owner: chkal Users: tester
Issue: TOGGLZ-68

Togglz 2.0.0.Final
http //www togglz.org/
JBoss Web/7.0.13 Final

removed as soon as
feature decision i1s resolved

Feature toggles are purposetul
technical debt added to support
engineering practices like
Continuous Delivery.

u

-

Yo

taxonomy

@FeatureGroup
@Label("Performance Improvements")
@Target(ElementType.FIELD)
@Retention(RetentionPolicy.RUNTIME)
public @interface Performance {

// no content

} toggliz

"

works on all platforms &
technology stacks

ubiquitous

Brawnch bv
Abskrackion

Application

—

Interface implements

Application

New

Library

—

Interface implements

q=====1

Application

Library

Interface implements

Application

Interface implements

Application

“Strangler” Pattern
oa * cer *

starting rlv d. half nearly ol
position early days alr way finished finished

make something new that obsoletes a
small percentage of something old

put them live together

rinse, repeat

06 06 Legacy Application Strangulation : Case Studies - Paul Hammant's blog
>)2

2| || O paulhammant .com

B Reader JLV!

“We never told the

5 July 14™, 2013
Martin F pplication” in mid 2004.
7
l I rr]l I Strangu phase one thing our for refactori
S e rS a e S somethi hing new that obsoletes a small small stories 3
percent: ome more work in the same =
style, an b-apps):
: {
Nor digd we remove) (EhE0) Gakishiey kbt (afales

access to the old
system. We relied
on making the system so compelling that there was no
reason to use the old. This also meant that we stayed
focused on the users real requirements”

paulhammant.com/2013/07/14/legacy-application-strangulation-case-studies/

Release branches are OK...

Mainline Trunk Based Development

Long-lived branches damaqge
continuous integration.,

Feature Branching
No Refactoring

[[N\ 2 |

Untrusted
Contributors

Cherry Picking

e T e

Continuous Integration

No Refactoring

Feature Branching

/ /‘ /‘ \ -4 No combined
features
Big Scary Merge 1 ! ®
Untrusted
Contributors

Cherry Picking

e T e

Continuous Integration

meba—work is
more interesting
than worlk

make sure your practices support your
goals (and don't become goals unto
themselves)

Release
Strateqgies

blue—green deployments

canary releases

Incremental Release
Strateqgies

dark launching

production immune system

DEPENDENT SERVICE

@ o Database

Abstraction layer Abstraction layer

STATIC CONTENT

—ﬁ /static/1.1 APPLICATION

m— —

Router /
Load balancer

lue—green
epwvmw\&s

Message Router

Web server
\§ J

Application
server

Database
server

Web server
\§ J

Application
server

Database
server

Canary Releasing

Canary Releasing

Canary Releasing

Canary Releasing

reduce risk of release

N p. M\ XN\
- - VXN X
X\ X\
v - \ X\ X
multi-variant testing

O

11

o0

performance testing

Togglz - Features flag for Java

(5] www.togglz.org/documentation/activation-strategies.htm

MAIN
Home

Downloads

Source Code

Forums

Issue Tracker
stackoverflow.com
Continuous Integration
License

REFERENCE
What's new?
Getting Started
Javadocs 2.0.0.Final
Javadocs 1.1.0.Final
Javadocs 1.0.0.Final
Updating Notes
DOCUMENTATION
Overview
Installation
Configuration

Usage
Admin Console

Feature Flags for the Java platform

Activation Strategies

Togglz defines the concept of activation strategies. They are responsible to decide whether an enabled feature
is active or not. Activation strategies can for example be used to activate features only for specific users, for
specific client IPs or at a specified time.

Togglz ships with the following default strategies:

Username
Gradual rollout
Release date
e Client IP

e Server IP

o ScriptEngine

The following sections will describe each strategy in detail. The last section custom strategies describes how to
build you own strategies.

Username

Enabling features for specific users was already supported in very early versions of Togglz, even before the
activation strategy concept was introduced in Togglz 2.0.0.

If you select this strategy for a feature, you can specify an comma-separated list of users for which the feature
should be active. Togglz will use the UserProvider you configured for the FeatureManager to determine the
current user and compare it to that list.

Please note that Togglz will take case into account when comparing the usernames. So the users admin and
Admin are NOT the same.

. . A
/4 - - S
. N R N\
> S -y
é v { e
T S P
v M v \
a4 Ve
’ 5

, What it a developer accidentally
‘ replaced the “Buy”’ button with
oo AN , “spacer.gif' ?

L

Dark Launching

User interface User interface User interface

User interface User interface User interface User interface

www.mysite.com

Blue. No, yel...

Burn her! Did you dress her up like this? Found them? In Mercia?!
The coconut's tropical! Bloody Peasant! I'm not a witch. A newt?

The Knights Who Say Ni
demand a sacrifice!

The swallow may fly south with the sun, and the house martin or
the plover may seek warmer climes in winter, yet these are not
strangers to our land. We found them. The nose?

‘What a strange person.
Now, look here, my good man.
. ‘We want a shrubbery!!

returns page v1

www.mysite.com

Blue. No, yel...

Burn her! Did you dress her up like this? Found them? In Mercia?!
The coconut's tropical! Bloody Peasant! I'm not a witch. A newt?

The Knights Who Say Ni
demand a sacrifice!

The swallow may fly south with the sun, and the house martin or
the plover may seek warmer climes in winter, yet these are not
strangers to our land. We found them. The nose?

‘What a strange person.
Now, look here, my good man.
. ‘We want a shrubbery!!

All servers have the
same software

returns page v2

J

Remediakion?

Il OREILLY

A
vy

ThoughtWorks

| NEAL FORD
Presentation

PATTERNS Fctlonal
SRS Thinking

PARADIGM OVIR SINTAX

Director / Software Architect / Meme Wrangler

NEAL FORD | MATTHEW MCCULLOUGH | NATHANIEL SCHUTTA

Neal Ford

ART

JAVA WEB, 477

DEVELOPMENT =

Clojure Functior;al Thinking:
Inside Out Functional

programming using
Java, Clojure & Scala

Engmeering
Practices

Neal Ford

O'REILLY"

SOFTWARE ARCHITECTURE SERIES

—— _—

OREILLY OREILLY OREILLY OREILLY

SOFTWARE ARCHITECTURE SERIES SOFTWARE ARCHITECTURE SERIES SOFI’WARE ARCHITECTURE SERIES ‘ SOFTWARE ARCHITECTURE SERIES

Stuart Halloway
& Neal Ford Neal Ford

OREILLY OREILLY

SOFTWARE ARCHITECTURE SERIES SOFTWARE ARCHITECTURE SERIES

Software
Architecture
Fundamentals
Understanding

the Basics

Fundamentals, Patterns, AntiPatterns,
Soft Skills, Continuous Delivery,
and Code Analysis Tools

Neal Ford, Mark Richards
VIDEO

Software
Architecture
Fundamentals
Beyond the Basics

Tradeoffs, Abstraction,
Comparing Architectures,
Integration and Enterprise
Architecture, Emergent Design

Neal Ford, Mark Richards
VIDEO

Software
Architecture
Fundamentals
Soft Skills

Problem Solving, Decision
Making, Refactoring,
Productivity & Communications

Neal Ford, Mark Richards
VIDEO

Software
Architecture
Fundamentals
People Skills

Leadership, Negotiation,
Meetings, Working with People,
and Building a Tech Radar

Neal Ford, Mark Richards
VIDEO

Software
Architecture
Fundamentals
Service-Based
Architectures

Structure, Engineering
Practices, and Migration

Neal Ford, Mark Richards
VIDEO

Engineering
Practices for
Continuous

Delivery

Neal Ford

VIDEO

