
Creating Software Architectures
NFJS Architecture Training

Hands-on Software Architect
Published Author / Conference Speaker

Mark Richards

http://www.wmrichards.com

https://www.linkedin.com/in/markrichards3

@markrichardssa

OSCON 2017

ThoughtWorks
Director / Software Architect / Meme Wrangler

Neal Ford

http://www.nealford.com
@neal4d

1



2



workshop agenda - day 1

course 

introduction

architecture 

characteristics

architecture 

tradeoffs

architecture 

patterns

architectural 

thinking

architecture 

katas

3



workshop agenda - day 2

component-based 

thinking

architecture 

decisions

?

architecture 

katas

architecture 

katas

presenting 

architectures

architecture 

katas

documenting 

architectures

architecture 

patterns (cont)

4



workshop agenda - day 3

analyzing 

architectures

architecture 

katas

reactive 

architecture

evolutionary 

architecture

next steps  

5



course slides

http://www.wmrichards.com/sdd-architecture-2016.pdf

password: sdd

6



attendee introductions

your name

role or title

why are you here?

7



software architecture?

“the highest level concept of a system in its 

environment. The architecture of a software 

system (at a given point in time) is its 

organization or structure of significant 

components interacting through interfaces, 

those components being composed of 

successively smaller components and 

interfaces.” 

Rational Unified Process definition, working off the IEEE definition

http://martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf

8



software architecture?

http://martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf

Architecture is the highest level 

concept of the expert developers. 

“In most successful software projects, the expert developers 

working on that project have a shared understanding of the  

system design. This shared understanding is called 

‘architecture.’ This understanding includes how the system is 

divided into components and how the components interact 

through interfaces. These components are usually 

composed of smaller components, but the architecture only 

includes the components and interfaces that are understood 

by all the developers.” 

9



software architecture?

Architecture is about the important stuff. 

Whatever that is. 

http://martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf

Ralph Johnson

developers product 

owner

operations

10



Architecture is abstract 
until operationalized.

3D 4D2D

view

controller

model

ORM ORM
Hibernate

4.3.8

model
Customer

1.3.5

controller
CustomerInfo

4.3.1

view
AngularJS
1.3.15

Oracle 12c

ORM
Hibernate

4.4.1

model
Customer

1.3.5

controller
CustomerInfo

4.3.1

view
AngularJS
1.3.15

Oracle 12c

nealford.com/memeagora/2015/03/30/architecture_is_abstract_until_operationalized.html

11



expectations of an architect

12



Application Architect

Enterprise Architect

Integration Architect

Security Architect

Information Architect
Technical Architect

Solutions Architect
Systems Architect

Data Architect

Network Architect

Business Architect

expectations of an architect

13



define the architecture and design 

principles to guide technology 

decisions for the enterprise

expectations of an architect

14



analyze the current technology 

environment and recommend solutions 

for improvement.

expectations of an architect

15



analyze technology and industry 

trends and keep current with the 

latest trends

expectations of an architect

16



ensure compliance with the 

architecture

expectations of an architect

17



have exposure to multiple and 

diverse technologies, platforms, and 

environments

expectations of an architect

18



have a certain level of business 

domain expertise

expectations of an architect

19



possess exceptional interpersonal 

skills, including teamwork, facilitation, 

and negotiation

expectations of an architect

20



understand the political climate of 

the enterprise and be able to 

navigate the politics

expectations of an architect

21



That’s what I do. 

I drink, and I 

know things.

22



architectural thinking

23



technical breadth vs. depth

stuff you know

stuff you know  

you don’t know

stuff you don’t know  

you don’t know

focus here!

technical breadth

stuff you have to maintain

technical  
depth

24



where do you draw the line between 

architecture and design?

25



26



identifying architecture 
characteristics

27



 translation skills

architecture characteristics

reliability

scalability

performance

availability

28



sa
mpli

ng
System Quality Attributes

accessibility evolvability repeatability

accountability extensibility reproducibility

accuracy failure transparency resilience

adaptability fault-tolerance responsiveness

administrability fidelity reusability

affordability flexibility robustness

agility inspectability safety

auditability installability scalability

autonomy integrity seamlessness

availability interchangeability self-sustainability

compatibility interoperability serviceability

composability learnability supportability

configurability maintainability securability

correctness manageability simplicity

credibility mobility stability

customizability modifiability standards compliance

debugability modularity survivability

degradability operability sustainability

determinability orthogonality tailorability

demonstrability portability testability

dependability precision timeliness

deployability predictability traceability

discoverability process capabilities transparency

distributability producibility ubiquity

durability provability understandability

effectiveness recoverability upgradability

efficiency relevance usability

reliability

https://en.wikipedia.org/wiki/List_of_system_quality_attributes
29



“our business is constantly changing 

to meet new demands of the 

marketplace”

???

architecture characteristics

30



“due to new regulatory requirements, 

it is imperative that we complete end-

of-day processing in time”

???

architecture characteristics

31



“we need faster time to market to 

remain competitive”

???

architecture characteristics

32



“our plan is to engage heavily in 

mergers and acquisitions in the next 

three years”

???

architecture characteristics

33



“we have a very tight timeframe and 

budget for this project”

???

architecture characteristics

34



35



feasibility

agility

elasticity

scalability

architecture characteristics

36



37



Messaging Models

38



Messaging Models

39



architecture tradeoffs

 "over time we are expecting the entire company 

to use this system"

 "the budget and timeframe for this system is 

very, very tight"

 "we need lightning-fast response time to keep 

up with the backlog of calls" 

 "we are planning to acquire several businesses 

in the next 5 years" 

 performance

 scalability

 extensibility  agility

 feasibility

 maintainability

40



 proposed 

architecture

 business 

drivers

 quality 

attributes

 ATAM
 validated and 

approved 

architecture

architecture tradeoffs
 architecture tradeoff analysis method (ATAM)

41



architecture tradeoffs
 cost-benefit analysis method (CBAM)

business 

goals

cost

performance 

availability 
scalability

assess each and 

maximize the 

difference

42



 ATAM

Software Architecture 

in Practice 3rd Edition,  

Bass et.al,  

Addison Wesley

Software Engineering Institute 

Digital Library 

http://resources.sei.cmu.edu/library/ 

asset-view.cfm?assetID=5177

architecture tradeoffs

http://www.sei.cmu.edu/architecture/

tools/evaluate/cbam.cfm

 CBAM

43



architecture katas

familiarization and identifying 
architecture characteristics

44



software architecture  
patterns

45



architecture patterns help define the basic 

characteristics and behavior of the 

application

46



architecture pattern classification

distributed

monolithic

microkernel pipeline

event-driven

service-based service-oriented

microservices space-based

layered

persistence layer

47



architecture pattern hybrids

event-driven microservices

space-based microservices

event-driven layered

persistence layer

layered microkernel

persistence layer

48



architecture pattern roadmap

microservices 

architecture

space-based 

architecture
service-oriented 

architecture

microkernel 

architecture

service-based  

architecture

event-driven 

architecture
pipeline 

architecture

layered 

architecture

persistence layer

49



architecture pattern roadmap

microservices 

architecture

space-based 

architecture
service-oriented 

architecture

microkernel 

architecture

service-based  

architecture

event-driven 

architecture
pipeline 

architecture

layered 

architecture

persistence layer

50



layered architecture

  presentation layer

  business layer

  persistence layer

  database layer

component component component

component component component

component component component

51



  presentation layer

  business layer

  persistence layer

  database layer

component component

component component

component component

component

component

component

layered architecture

request

52



layered architecture

  presentation layer

  business layer

  persistence layer

  database layer

component component component

component component component

component component component

separation of concerns

53



layered architecture

  presentation layer component component component

  business layer component component component

  persistence layer component component component

  database layer

layers of isolation

  database layer

  presentation layer component component component

  persistence layer component component component

  business layer component component component

54



  persistence layer component component component

  database layer

layered architecture

  presentation layer

  business layer

component component component

component component component

hybrids and variants

  services layer component component component

55



  persistence layer component component component

  database layer

layered architecture

  presentation layer

  business layer

component component component

component component component

hybrids and variants

  services layer component component component

56



 agility deployment testability performance scalability simplicity cost

layered architecture

57



architecture pattern roadmap

microservices 

architecture

space-based 

architecture
service-oriented 

architecture

microkernel 

architecture

service-based  

architecture

event-driven 

architecture
pipeline 

architecture

layered 

architecture

persistence layer

58



architecture pattern roadmap

microservices 

architecture

space-based 

architecture
service-oriented 

architecture

microkernel 

architecture

service-based  

architecture

event-driven 

architecture
pipeline 

architecture

layered 

architecture

persistence layer

59



microkernel architecture

plug-in 

component

plug-in 

component

plug-in 

component

plug-in 

component

plug-in 

component

plug-in 

component

core 

system

(a.k.a. plug-in architecture pattern)

60



microkernel architecture

plug-in 

module

core 

system

architectural components

minimal functionality to run system

general business rules and logic

no custom processing

standalone independent module

specific additional rules or logic

61



microkernel architecture

62



claims processing

MA 

module

NY 

module

CA 

module

GA 

module

NH 

module

TX 

module

NY 

module

microkernel architecture

63



plug-in 

component 1

plug-in 

component 2

plug-in 

component 3

plug-in 

component 4

core system

registry

registry

1: <location>, <contract>
2: <location>, <contract>
3: <location>, <contract>
4: <location>, <contract>

microkernel architecture

64



plug-in 

component 1

plug-in 

component 2

plug-in 

component 3

plug-in 

component 4

core system

plug-in contracts

std

std

std

std

microkernel architecture

65



 agility deployment testability performance scalability simplicity cost

microkernel architecture

66



architecture pattern roadmap

microservices 

architecture

space-based 

architecture
service-oriented 

architecture

microkernel 

architecture

service-based  

architecture

event-driven 

architecture
pipeline 

architecture

layered 

architecture

persistence layer

67



architecture pattern roadmap

microservices 

architecture

space-based 

architecture
service-oriented 

architecture

microkernel 

architecture

service-based  

architecture

event-driven 

architecture
pipeline 

architecture

layered 

architecture

persistence layer

68



event-driven architecture

mediator topologybroker topology

69



 event 
channel

 event 
channel

 event 
channel

broker topology

event processor
event

module module

module module

processor
event

module module

module module

processor
event

module module

module module

processor
event

module module

module module

processor
event

module module

module module

event-driven architecture

70



you move...

customer process

notification process adjustment process

quote process claims process

you 

moved!

change 

address

recalc 

quote

update 

claims

change 

address

update 

claims

event-driven architecture

71



 event 
queue

event-driven architecture

mediator
event

 event 
channel

 event 
channel

 event 
channel

mediator topology

event

processor
event

module module

module module

processor
event

module module

module module

processor
event

module module

module module

processor
event

module module

module module

processor
event

module module

module module

72



process engine

adjustment 

process

notification 

process

quote 

process

claims 

process

customer 

process

you move...

you 

moved

notify 

insurednotify 

insured

change 

address

recalc 

quote

update 

claims

adjust 

claimschange 

address

recalc 

quote

update 

claims

adjust 

claims

event-driven architecture

73



 agility deployment testability performance scalability simplicity cost

event-driven architecture

74



architecture pattern roadmap

microservices 

architecture

space-based 

architecture
service-oriented 

architecture

microkernel 

architecture

service-based  

architecture

event-driven 

architecture
pipeline 

architecture

layered 

architecture

persistence layer

75



architecture pattern roadmap

microservices 

architecture

space-based 

architecture
service-oriented 

architecture

microkernel 

architecture

service-based  

architecture

event-driven 

architecture
pipeline 

architecture

layered 

architecture

persistence layer

76



filter filter

filter filter

filter
pipe pipe

pipe

pipe

(a.k.a. pipe and filter architecture)

pipeline architecture

77



pipes

  transformer
pipepipe

 uni-directional only 

 usually point-to-point for high performance, but could 

be message-based for scalability 

 payload can be any type (text, bytes, object, etc.)

pipeline architecture

78



filters

filter
pipepipe

 self-contained and independent from other filters 

 usually designed to perform a single specific task 

 four filter types (producer, consumer, transformer, and 

tester

pipeline architecture

79



filters

pipe
starting point, outbound onlyproducer

  transformer
pipepipe

input, processing, output

tester
pipepipe

input, discard or pass-thru

consumer
pipe

ending point, inbound only

pipeline architecture

80



text capture
text

text converter
xml

process engine

example: capture data in multiple formats, process 

the data, and send to multiple outputs

json capture
json

json converter
xml

file output

processed 

xml

output director

db output

pipeline architecture

81



 agility deployment testability performance scalability simplicity cost

pipeline architecture

82



architecture pattern roadmap

microservices 

architecture

space-based 

architecture
service-oriented 

architecture

microkernel 

architecture

service-based  

architecture

event-driven 

architecture
pipeline 

architecture

layered 

architecture

persistence layer

83



architecture pattern roadmap

microservices 

architecture

space-based 

architecture
service-oriented 

architecture

microkernel 

architecture

service-based  

architecture

event-driven 

architecture
pipeline 

architecture

layered 

architecture

persistence layer

84



let's talk about scalability for a moment...

web server app server

web server

web server

web server

web server

web server

web server

app server

app server

app server

app server

space-based architecture

85



space-based architecture

db

processing unitprocessing unit processing unit

virtualized middleware

...

messaging 

grid
data grid

processing 

grid

deployment 

manager

86



processing unit

processing unit

module module module

data replication engine

space-based architecture

in memory data grid

87



middleware

messaging 

grid

data grid

processing 

grid

deployment 

manager

space-based architecture

88



middleware

messaging 

grid

data grid

processing 

grid

deployment 

manager

manages input request and session

space-based architecture

89



middleware

messaging 

grid

data grid

processing 

grid

deployment 

manager

manages data replication between 

processing units

space-based architecture

------------------------ ------------ ------------

90



middleware

messaging 

grid

data grid

processing 

grid

deployment 

manager

manages distributed 

request processing

space-based architecture

91



middleware

messaging 

grid

data grid

processing 

grid

deployment 

manager

manages dynamic processing unit 

deployment

space-based architecture

92



product implementations

javaspaces

gigaspaces

ibm object grid

gemfire

ncache

oracle coherence

space-based architecture

93



 it's all about variable scalability... 

 good for applications that have 

variable load or inconsistent peak  

times 

 not a good fit for traditional large-scale relational 

database systems  

 relatively complex and expensive pattern to implement

space-based architecture

94



 agility deployment testability performance scalability simplicity cost

space-based architecture

95



architecture pattern roadmap

microservices 

architecture

space-based 

architecture
service-oriented 

architecture

microkernel 

architecture

service-based  

architecture

event-driven 

architecture
pipeline 

architecture

layered 

architecture

persistence layer

96



architecture pattern roadmap

microservices 

architecture

space-based 

architecture
service-oriented 

architecture

microkernel 

architecture

service-based  

architecture

event-driven 

architecture
pipeline 

architecture

layered 

architecture

persistence layer

97



microservices architecture

98



microservices architecture

distributed

99



api layer

client requests client requests client requests

microservices architecture

100



microservices architecture

service 

consumer 

(C#/.NET)

service 

consumer 

(Java)

service 

consumer 

(Java)

REST REST REST

service 

(Java)

service 

(Java)

service 

(C#/.NET)

protocol-aware heterogeneous interoperability

101



microservices architecture

distributed

separately 

deployed

102



api layer

client requests client requests client requests

microservices architecture

103



microservices architecture

SERVICE REGISTRY  

AND DISCOVERY

SECURITY AND 

COMPLIANCE
LOAD BALANCING

DEPLOYMENT
INTER-SERVICE 

COMMUNICATION 
NETWORK

MONITORING

CONTINUOUS  

INTEGRATION

INFRASTRUCTURE 

AUTOMATION

PLATFORM 

MANAGEMENT

CONTAINER REGISTRY API MANAGEMENT

CLOUD MANAGEMENT OPERATING SYSTEM
DATABASE 

MANAGEMENT

SERVICE OPTIMIZATION

104



microservices architecture

distributed

separately 

deployed

service 

component

105



api layer

client requests client requests client requests

microservices architecture

106



microservices architecture

api layer

client requests client requests client requests

infrastructure services
functional services

messaging services

107



what is the right size for a microservice?

purpose transactions choreography

microservices architecture

108



service scope and function

(single-purpose function)

purpose

microservices architecture

109



transactions

no acid 

transaction

microservices architecture

110



api layer

choreography

microservices architecture

111



microservices architecture

distributed

separately 

deployed

service 

component
bounded 

context

112



api layer

client requests client requests client requests

microservices architecture

113



api layer

client requests client requests client requests

data replication

microservices architecture

114



microservices architecture

distributed

separately 

deployed

service 

component
bounded 

context

data 

domains

115



api layer

client requests client requests client requests

microservices architecture

116



api layer

client requests client requests client requests

microservices architecture

117



assumes low rate of schema changes (or use of noSQL)

increases performance and overall reliability 

reduces data duplication

microservices architecture

118



microservices architecture

distributed

separately 

deployed

service 

component
bounded 

context

data 

domains

api layer

119



api layer

hides the actual endpoint of the service, exposing 

only those services available for public consumption

120



api layer

121



api layer

feature toggle

122



api layer

123



api layer

124



microservices architecture

125



api layer

endpoint proxy

126



api layer

load balancer

127



api layer

gateway (integration hub)

128



microservices architecture

distributed

separately 

deployed

service 

component
bounded 

context

data 

domains

event driven

api layer

129



api layer

client requests client requests client requests

microservices architecture

130



service orchestration

microservices architecture

update 

customer

front orchestrator

process 

claims

process 

quotes

process 

adjustments

notification

131



service orchestration

microservices architecture

update 

customer

process 

claims

process 

quotes

process 

adjustments

notification

132



service orchestration

microservices architecture

update 

customer

process 

claims

process 

quotes

process 

adjustments

notification

133



service orchestration

microservices architecture

update 

customer

process 

claims

process 

quotes

process 

adjustments

notification

134



service orchestration

microservices architecture

update 

customer

process 

claims

process 

quotes

process 

adjustments

notification

135



reporting techniques

eventual consistency patterns

performance tuning

reactive architecture patterns

microservices architecture

136



 agility deployment testability performance scalability simplicity cost

microservices architecture

137



pipeline architecture

pipeline vs. event-driven

synchronous data 

filtering

asynchronous event 

processing

always unidirectional can be request/reply

simple single purpose 

filters

complex multi-purpose 

processors

138



architecture pattern roadmap

microservices 

architecture

space-based 

architecture
service-oriented 

architecture

microkernel 

architecture

service-based  

architecture

event-driven 

architecture
pipeline 

architecture

layered 

architecture

persistence layer

139



architecture pattern roadmap

microservices 

architecture

space-based 

architecture
service-oriented 

architecture

microkernel 

architecture

service-based  

architecture

event-driven 

architecture
pipeline 

architecture

layered 

architecture

persistence layer

140



  message bus

process choreographer

service orchestrator

  business services BS BS BS BS BS BS

  enterprise services ES ES ES ES ES ES

   application services AS  infrastructure services  IS

service-oriented architecture

141



enterprise 

scope

service-oriented architecture

142



enterprise 

scope

service 

taxonomy

service-oriented architecture

143



  message bus

process choreographer

service orchestrator

  business services BS BS BS BS BS BS

  enterprise services ES ES ES ES ES ES

   application services AS  infrastructure services  IS

service-oriented architecture

144



  message bus

process choreographer

service orchestrator

  business services BS BS BS BS BS BS

  enterprise services ES ES ES ES ES ES

   application services AS  infrastructure services  IS

service-oriented architecture

business services

145



  message bus

process choreographer

service orchestrator

  business services BS BS BS BS BS BS

  enterprise services ES ES ES ES ES ES

   application services AS  infrastructure services  IS

service-oriented architecture

enterprise services

146



  message bus

process choreographer

service orchestrator

  business services BS BS BS BS BS BS

  enterprise services ES ES ES ES ES ES

   application services AS  infrastructure services  IS

service-oriented architecture

application services

147



  message bus

process choreographer

service orchestrator

  business services BS BS BS BS BS BS

  enterprise services ES ES ES ES ES ES

   application services AS  infrastructure services  IS

service-oriented architecture

infrastructure services

148



enterprise 

scope

service 

taxonomy

shared 

resources

service-oriented architecture

149



service-oriented architecture

shared resources

auto and 

homeowners 

insurance 

division

commercial 

insurance 

division

casualty 

insurance 

division

life 

insurance 

division

disability 

insurance 

division

travel 

insurance 

division

customer

customer

customer

customer

customer

customer

customer 

service

150



enterprise 

scope

service 

taxonomy

shared 

resources

heterogeneous 

integration

service-oriented architecture

151



messaging middleware

protocol-agnostic heterogeneous interoperability

service-oriented architecture

REST AMQP REST

service 

consumer 

(C#/.NET)

service 

consumer 

(Java)

service 

consumer 

(Java)

service 

(EJB3)

service 

(C++/Tux)

service 

(Java)

RMI ATMI SOAP

152



enterprise 

scope

service 

taxonomy

shared 

resources

heterogeneous 

integration

contract 

decoupling

service-oriented architecture

153



  message bus

process choreographer

service orchestrator

  business services BS BS BS BS BS BS

service-oriented architecture

  enterprise services ES ES ES ES ES ES

   application services AS  infrastructure services  IS

154



business 

service

enterprise 

service
servic

enhancement and 

transformation

cusip 

mm/dd/yy

sedol 

yyyy.mm.dd 

symbol

contract decoupling

service-oriented architecture

037833100

09/12/16

xml

037833100

09/12/16

xml

2046251

2016.09.12

AAPL

java

2046251

2016.09.12

AAPL

java

155



enterprise 

scope

service 

taxonomy

shared 

resources

heterogeneous 

integration

abstraction 

(api layers)

contract 

decoupling

service-oriented architecture

156



api layer api layer

api 

layer

ES

ES

ES

ES

ES

ES

client requests
BS

BS

integration hub

service-oriented architecture

157



 agility deployment testability performance scalability simplicity cost

service-oriented architecture

158



architecture pattern roadmap

microservices 

architecture

space-based 

architecture
service-oriented 

architecture

microkernel 

architecture

service-based  

architecture

event-driven 

architecture
pipeline 

architecture

layered 

architecture

persistence layer

159



architecture pattern roadmap

microservices 

architecture

space-based 

architecture
service-oriented 

architecture

microkernel 

architecture

service-based  

architecture

event-driven 

architecture
pipeline 

architecture

layered 

architecture

persistence layer

160



service-oriented 

architecture

microservices 

architecture

is there a middle ground?

service-based architecture

service-based 

architecture

161



business applications?

service-based architecture

162



service-based architecture

163



deployment 

pipeline

service-based architecture

service 

granularity

database 

scope

164



api layer

client requests client requests client requests

service granularity

service-based architecture

165



user interface layer

client requests client requests client requests

service granularity

service-based architecture

166



service granularity

service-based architecture

food stamp service

emergency cash service

utility assistance service

child care assist service

health care assist service

nursing facility care service
...

benefit service

167



advantages

service granularity

unit of work transactional context

performance and robustness

service-based architecture

domain scope

shared resources

168



tradeoffs

service granularity

service-based architecture

services development and testing

deployment pipeline planning

change control

169



database scope

api layer

client requests client requests client requests

service-based architecture

170



database scope

user interface layer

client requests client requests client requests

service-based architecture

171



database scope

user interface layer

client requests client requests client requests

service-based architecture

172



database scope

service-based architecture

food stamp db

emergency cash db

utility assistance db

child care assist db

health care assist db

nursing facility care db
...

shared common db

173



performance (joins, orchestration, choreography)

database scope

feasibility

service-based architecture

advantages

174



bounded context

service coupling based on schema

database scope

schema changes

service-based architecture

tradeoffs

175



deployment pipeline

service-based architecture

176



service-based architecture

deployment pipeline

177



no devops complexity

minimal organizational change

service-based architecture

deployment pipeline

advantages

178



service-based architecture

deployment pipeline

lack of quick and effective deployments

additional risk and coordination needed

poor continuous delivery model

tradeoffs

179



electronics recycling application

kiosk

quote
accounting

reporting

item status assessment

receiving

recycling

public requests receiving department recycling and accounting

180



electronics recycling application

public uikiosk receiving ui recycling ui

181



adding microservices

user interface layer

client requests client requests client requests

service-based architecture

182



adding microservices

user interface layer

client requests client requests client requests

service-based architecture

183



adding microservices

user interface layer

client requests client requests client requests

service-based architecture

184



 agility deployment testability performance scalability simplicity cost

service-based architecture

185



CQRS

http://codebetter.com/gregyoung/2010/02/16/cqrs-task-based-uis-event-sourcing-agh/

Query Model

Command Model

User Interface

186



traditional

Model

User Interface

187



CQRS Command Query Responsibility Separation

Query Model

Command Model

User Interface

188



reporting in cqrs

Query Model

Command Model

User Interface

189



CQRS natural fits

 task-based user interface 

 meshes well with event sourcing 

 eventual consistency

190



eventual consistency

http://www.allthingsdistributed.com/2008/12/eventually_consistent.html

“Building reliable 

distributed systems at 

a worldwide scale 

demands trade-offs 

between consistency 

and availability.”

191



CQRS natural fits

 task-based user interface 

 meshes well with event sourcing 

 eventual consistency 

 complex or granular domains

consistency or availability  
(but never both)

192



LMAX

193



LMAX

 JVM-based retail financial trading 

platform 

 centers on Business Logic Processor 

handling 6,000,000 orders/sec on 1 

thread 

 surrounded by Disruptors, network of 

lock-less queues

http://martinfowler.com/articles/lmax.html

194



overall structure

— single-threaded Java app 

— relies only on JVM 

— easy to test

Business
Logic 

Processor

195



business logic processorBusiness
Logic 

Processor

 in-memory 

 event sourcing via input disruptor 

 snapshots (full restart—JVM + snapshots
— less than 1 min) 

 multiple instances running 

 each event processed by multiple 
processors but only one result used

196



input/output disruptors

197



disruptors

 custom concurrency component 

 multi-cast graph of queues where 

producers enqueue objects and 

consumers dequeue in parallel 

 ring buffer with sequence counters

198



20x106 slots for input buffer 

4x106 slots for output buffer

199



200



“mechanical sympathy”

 started with transactions 

 switched to Actor-based concurrency 

 hypothesized & measured results 

 CPU caching is key ➠ single writer 

principle

201



architecture katas

identifying architecture  
patterns

202



component-based thinking

203



component identification  
and granularity

204



component identification

as an architect, you should think about the artifacts 

within the architecture in terms of components 

component: 

an encapsulated unit of software 

that has a well defined interface 

and a clear and concise role and 

responsibility statement 

component

component

component

component

component

205



subsystem, layer, or service

component component component

component scope

module

module

module

module

module

module

component identification

206



Message Structure

roles and responsibility model

component identification

207



Message Structure

message 

dispatcher
compliance 

controller

trader limits

restriction

stock trade order validation

component identification

208



Message Structure

message 

dispatcher
compliance 

controller

trader limits

restriction

stock trade order validation

responsible for dispatching the trade to the next 

available controller.

component identification

209



Message Structure

message 

dispatcher
compliance 

controller

trader limits

restriction

stock trade order validation

responsible for orchestrating the trade order 

validation process by calling specific compliance 

processors.

component identification

210



Message Structure

message 

dispatcher
compliance 

controller

trader limits

restriction

stock trade order validation

responsible for making sure the trader isn't 

exceeding assigned trader limits for the 

trade being placed.

component identification

211



Message Structure

message 

dispatcher
compliance 

controller

trader limits

restriction

stock trade order validation

responsible for making sure the trade order 

symbol isn't on the restricted stock list.

component identification

212



Message Structure

message 

dispatcher
compliance 

controller

trader limits

restriction

stock trade order validation

who should be responsible for retrieving and 

caching all of the data needed by the 

compliance processors?

?

?
?

component identification

213



Message Structure

message 

dispatcher
compliance 

controller

trader limits

restriction

stock trade order validation

responsible for orchestrating the trade order validation 

process by calling specific compliance processors. also 

responsible for retrieving and caching all data needed by 

the compliance processors 

component identification

214



Message Structure

message 

dispatcher
compliance 

controller

trader limits

restriction

stock trade order validation

who should be responsible for persisting 

trade validation errors when they occur?

?

?
?

component identification

215



Message Structure

message 

dispatcher
compliance 

controller

trader limits

restriction

stock trade order validation

responsible for orchestrating the trade order validation 

process by calling specific compliance processors. also 

responsible for retrieving and caching all data needed by 

the compliance processors and persisting all validation 

errors. 

component identification

216



Message Structure

message 

dispatcher
compliance 

controller

trader limits

restriction

stock trade order validation

component identification

217



Message Structure

message 

dispatcher
compliance 

controller

trader limits

restriction

stock trade order validation

data 

manager

component identification

218



Message Structure

message 

dispatcher
compliance 

controller

trader limits

restriction

stock trade order validation

data 

manager

responsible for retrieving and caching all data needed by 

the compliance processors and persisting all validation 

errors. 

component identification

219



Message Structure

message 

dispatcher
compliance 

controller

trader limits

restriction

stock trade order validation

data 

manager

responsible for orchestrating the trade order validation 

process by calling specific compliance processors. 

component identification

220



component identification

identify  

initial core 

components

analyze roles and 

responsibility 

statements

analyze  

non-functional 

aspects

refactor 

components

assign user 

stories to 

components

221



identify initial components using core functionality

order placementplace orders

ship orders

track orders

order shipment

order tracking

component identification

222



component identification

assign requirements, use cases, or user 

stories to a component

order placementuser story: check inventory

user story: validate order

user story: notify customer

order placement

customer notification

223



service identification

identify coarse-

grained functional 

areas

create coarse-

grained 

microservices

map services to 
data tables

224



service identification

identify coarse-

grained functional 

areas

create coarse-

grained 

microservices

map services to 
data tables

identify data 

overlaps and 

dependencies

refine services  
and data

225



component granularity

order manager

responsible for creating, deleting, and updating orders. 

also responsible for shipping the order and tracking the 

order once it has been shipped. this component is also 

responsible for notifying the customer each time the order 

status changes. 

component identification

226



component granularity

order manager

order maintenance

order shipment

customer notification

responsible for creating, deleting, 

and updating orders. 

responsible for shipping and 

tracking orders

responsible for notifying the customer 

when the order status changes. 

component identification

227



component coupling

228



component coupling

the extent to which components know 

about each other

component component

component

229



afferent coupling

the degree to which other components are 

dependent on the target component 

component a

component d

component b

component c

component coupling

230



efferent coupling

the degree to which the target component 

is dependent on other components 

component a

component d

component b

component c

component coupling

231



temporal coupling

functionality is grouped into one component due 

to timing dependencies (e.g. transactions)

component coupling

component a

component b component c

component a

component b component c

232



tight 

coupling

loose 

coupling

component coupling

external 

coupling

control  

coupling

data  

coupling
pathological 

coupling

233



component b component a 

pathological coupling

one component relies on the inner 

workings of another component

X

component coupling

234



external coupling

multiple components share an externally 

imposed protocol or data format

component coupling

component a component a
rest

235



control coupling

one component passes information to 

another component on what to do

component coupling

component b component a 

236



data coupling

component coupling

the degree to which components are 

bound to a shared data context 

component a component b component c

237



struts 1.0

component coupling

consequences of ignoring…

238



struts 2
239



240



component cohesion

241



the degree and manner to which the operations of a 

component are related to one another

customer 

maintenance

add customer

update customer

get customer

notify customer

get customer orders

cancel customer orders

component cohesion

242



the degree and manner to which the operations of a 

component are related to one another

customer 

maintenance

add customer

update customer

get customer

notify customer

get customer orders

cancel customer orders
order 

maintenance

component cohesion

243



architecture katas

identifying major architecture 
components

244



Documenting & Presenting 

Software Architecture

@neal4d 

nealford.co

245



documenting software 

246



247



248



249



250



documentation

251



weight in bytes

252



motivation

253



agile architecture

Not all decisions made up front.

project timeline

254



???
255



https://martinfowler.com/books/uml.html

256



1

2
257



1

2
258



1

2
259



Architectural 
Diagraming Techniques

260



https://en.wikipedia.org/wiki/4+1_architectural_view_model

261



C4

http://www.codingthearchitecture.com

262



263



context

container

component

Attribute

Attribute

Class

Attribute

Attribute

Class Name

264



context

container

component

Attribute

Attribute

Class

Attribute

Attribute

Class Name

265



context

container

component

Attribute

Attribute

Class

Attribute

Attribute

Class Name

266



context

container

component

Attribute

Attribute

Class

Attribute

Attribute

Class Name

267



context

container

component

Attribute

Attribute

Class

Attribute

Attribute

Class Name

268



context

container

component

Attribute

Attribute

Class

Attribute

Attribute

Class Name

269



context

container

component

Attribute

Attribute

Class

Attribute

Attribute

Class Name

businessbusiness

270



271



272



273



274



275



276



277



api layer

client requests client requests client requests

Titles

Short and meaningful, numbered if diagram order is 

278



you move...

customer 

notification adjustment 

quote claims process

you 

moved!

change 

address

recalc 
quote

update 
claims

change 

address

update 

claims

Titles

Short and meaningful, numbered if diagram order is 

1

43

2b2a

279



api layer

client requests client requests client requests

Lines

Favor unidirectional arrows

add descriptive text to provide additional information

280



281



Layout

Sticky notes and index 

cards make a great 

substitute for drawn 

282



Color

Ensure that color coding is made 

explicit; watch out for color-

283



  message bus

process choreographer

service orchestrator

284



  

message bus

message bus message bus

message bus

285



Color

Ensure that color coding is made 

explicit; watch out for color-

286



Orientation

Most important thing in the 

middle; 

287



Shapes

Don’t assume that people will 

understand what different shapes 

288



container

database

component

289



Keys

Explain shapes, lines, colors, 

borders, acronyms, etc

290



Representational 
Consistency

Don’t abruptly change scale on 

diagrams; provide context for 

291



db

processing unitprocessing unit processing unit

virtualized middleware

messagin
data grid

processin deployme

292



messagin

data grid

processin

deployme

d

proceproce proce

virtualize

293



Representational 
Consistency

Don’t abruptly change scale on 

diagrams; provide context for 

294



Comprehensive 
Diagram

Don’t try to capture the entirety 

of software architecture in a single 

295



296



297



298



Comprehensive 
Diagram

Don’t try to capture the entirety 

of software architecture in a single 

299



Decisions

300



Architecture Decision 

http://thinkrelevance.com/blog/2011/11/15/documenting-architecture-decisions

We will keep a collection of records for 

"architecturally significant" decisions: 

those that affect the structure, non-

functional characteristics, dependencies, 

interfaces, or construction techniques.

301



Architecture Decision 

doc/arch/adr-NNN.mdTextile

asciidoc
numbered no number short text 

file

reversed ADR 

kept— 

marked 

superseded

semantic 

302



Architecture Decision 

 Title: short noun phrase 

 Context: forces at play 

 Decision: response to forces 

 Status: proposed, accepted, 
superseded 

303



ADR Tool

https://github.com/npryce/adr-tools

304



the scenario

Justifying Decisions

interna

l client

integrat

ion hub

JMS 

destinat

ion

internal 

applicat

ion

305



interna

l
JMS 

destinat

ion

internal 

applicat

ion

extern

al

b2b integrat

ion hub

the requirement: you need to federate 

the hub

Justifying Decisions

306



interna

l
internal 

applicat

ion

b2b

extern

al

integrat

ion hub

JMS 

destinat

ion

the decision: dedicated broker 

instances?

Justifying Decisions

307



interna

l
JMS 

destinat

ion

internal 

applicat

ion

b2b

extern

al

integrat

ion hub

the decision: centralized broker

Justifying Decisions

308



adr-001.md

309



310



311



The Case for 

http://asciidoc.org http://asciidoctor.org

312



The Case for 

http://asciidoctor.org/docs/asciidoctor-diagram/

313



The Case for 

314



315



316



Archeology

docs

current archeology

root for all  

documents

interesting historical 

artifacts

useful enough to 

update

317



Rules for Documentation

1. useful now

2. as little as possible

3. always accurate
318



Documenting & Presenting 

Software Architecture

@neal4d 

nealford.co

319



Presenting Software Architecture

320



321



  ?

322



?
323



PATTERNS
Techniques for  Craf t ing Bet ter  Presentat ions

NEAL FORD  |  MATTHEW MCCULLOUGH  |  NATHANIEL SCHUTTA

Presentation

324



building blocks

325



building blocks

transition movement between slides

animation movement on slides

326



327



process engine

adjustm

ent 

notificati

on 

quote 

process

claims 

process

custome

r 

you move...

you 

notify 

insured
notify 

insured

change 

address

recalc 

quote
update 

claims

adjust 

claims
change 

address
recalc 

quote

update 

claims

adjust 

claims

animations

328



building blocks

329



building blocks

transition movement between slides

animation movement on slides

Magic Move
330



331



Magic Move for tools that 
don’t have Magic Move

332



Magic Move Version

333



Red Shirt
Fact 1 

Another Fact 

Fact 3 

Yet Another Fact 

Fact 5

334



Magic Move Version

335



Non-Magic Move Version

336



Non-Magic Move Version
Fact 1 

Another Fact 

Fact 3 

Yet Another Fact 

Fact 5

337



Non-Magic Move Version

338



Non-Magic Move Version

339



Non-Magic Move Version

340



How It’s Done

Lipsync

341



?
342



https://martinfowler.com/bliki/FeatureBranch.html

343



344



345



346



creativity

347



Presentation Patterns

PATTERNS
Techniques for  Craf t ing Bet ter  Presentat ions

NEAL FORD  |  MATTHEW MCCULLOUGH  |  NATHANIEL SCHUTTA

Presentation

Narrative Arc

Building Blocks for Perfect Presentations

Creativity Patterns:

348



Presentations are a form of …

349



—Syd Fields

“Get your protagonist up a tree. Throw 

rocks at him. Then get him down.”

350



Introduction & 
exposition

C
om

plic
at

io
n

Climax

R
e
s
o

lu
tio

n

Story progression

T
e

n
s

io
n

Narrative Arc

351



Why So Many Superheroes?

352



Technical 

 Narrative?

Overall problem

problem solution

problem solution

problem

solution

solution

problem

solution

solution

problem solution

Overall solution (derived from previous 
solutions)

exposition

exposition

353



354



Test Driven DesignSolutionProblem Problem

SolutionSolution Solution ProblemProblem

Solution SolutionSolutionSolution ProblemProblem

Overall Solution
Summary

Solution

Overall
SolutionSolutionSolution ProblemProblem Problem

Solution SolutionSolution ProblemProblem

SolutionProblemSolution Solution

SolutionOverall
Solution

Problem SolutionProblem Exposition

Problem Solution Overall Problem Exposition

Solution ProblemProblemExposition

355



Presentation Patterns

PATTERNS
Techniques for  Craf t ing Bet ter  Presentat ions

NEAL FORD  |  MATTHEW MCCULLOUGH  |  NATHANIEL SCHUTTA

Presentation

Concurrent Creation

Building Blocks for Perfect Presentations

Creativity Patterns:

356



Concurrent Creation
Don’t feel compelled to create your 

presentation materials in the same order as 

the presentation itself.

357



Concurrent Creation
Don’t feel compelled to create your 

presentation materials in the same order as 

the presentation itself.

When creating a presentation as a 

group, follow certain practices to 

retain sanity.

358



When creating a presentation as a 

group, follow certain practices to 

retain sanity.

359



Sanity-saving Practices

slide wrangler

360



Sanity-saving Practices

unify on the same  
theme/template

361



Sanity-saving Practices

no one can change it 
without ensuring  

everyone has  
the update

362



Sanity-saving Practices

slide wrangler

363



Set a Deadline (with Teeth)

slide wrangler

364



Known Uses

every 
corporation 
everywhere!

365



Expansion Joints

Also know as: 

Goldilocks; Short, Medium, Long

366



versus 
Implicit
Explicit

367



Expansion JointsImplicit
practice skipping gracefully

368



versus 
Implicit
Explicit

369



ExplicitExpansion Joints

370



same (or closely related) 

Unifying Visual Theme

makes sense within  

the Narrative Arc

371



multi-purpose
executives

management

engineering

372



representational 

373



representational 

374



representational 

375



creation

376



some ideas > 1 

slide

auto-size text is 

evil!

don’t allow the 

tool to alter the 

message

evil!

most

Cookie Cutter

377



α β

git magic 

git server

378



git magic 

α β

git server

1. undo disastrous checkout

2. save changes to local stash

3. create local 
   branch
4. push stash to  
   local branch

379



git magic 

α β

git server
5. push local 
branch to  
   remote branch

6. you 
broke it — 

380



git magic 

α β

git server

7. stash recent changes

8. checkout remote branch

9. fix it!
10. check into main

11. unstash & get back to work

381



1

2 3

4

Cookie Cutter

382



“hard” 

bullet- 
riddle

d 

floodmark

cookie
- 

383



Why So Many Bullets?
• Both presenters and audience expect it. 

• Title + Bullets is often the default template. 

• Inexperienced speaker’s rely on bullets as speaker notes 

• Easy to bang together in a conference room while > 4 

people are talking

384



When a Slide Full of Text Appears
• Everyone in the audience 

• Reads the entire thing right away 

• You can’t help it 

• Now, the presenter spends the next five minutes  

• slowly reading what you’ve already read
Bullet Riddled Corpse

385



— Multiple terrible presentation guides

When showing a slide, pause for a moment to 

allow the audience to read it before you continue.

386



some ideas > 1 

slide

auto-size text is 

evil!

don’t allow the 

tool to alter the 

message

evil!

most

Cookie Cutter

Backtracking

387



a Context Keeper technique that enables you to 

reestablish a narrative context by purposefully 

repeating slides.

Backtracking

Introduction & 
exposition

C
om

plic
at

io
n

Climax

R
e
s
o

lu
tio

n

Story progression

T
e

n
s

io
n

digressio

digressio
digressio

388



Comedians

callback

389



Presentation Patterns

PATTERNS
Techniques for  Craf t ing Bet ter  Presentat ions

NEAL FORD  |  MATTHEW MCCULLOUGH  |  NATHANIEL SCHUTTA

Presentation

Floodmarks

Building Blocks for Perfect Presentations

Also know as: 

Death by Advertising, Marketing Mania, Kudzu Logos

Slide Creation Patterns:

390



Floodmarks
Floodmarks represent extraneous 

background imagery featured on every 

slide.

w    
    

 a    
    

  t
    

    
  e

    
    

  r
    

    
  m

    
    

  a
    

    
  r

    
    

  k

floodmark

floodmark

floodmark

floodmark

floodmark

floodmark

floodmark

floodmark

floodmark

391



392



Floodmarks  

as  

Constraint

393



394



— Floodmark artificially compresses the 

headline. 

— Lines at top and bottom artificially constrain 

information space. 

— What happens to large images? 

— Makes slide transitions obvious 

— Copyright and company logo on each slide 

negates intended effect.Charred Trail

395



Floodmark

s  

+ 

Images

396



Should You Ever Floodmark?

Bookend slides 

Anytime you want to remind your audience of branding 

At the end

397



temporal

398



Slideument

Presenter controls  
exposition rate.

Reader controls  
exposition rate.

InfodeckPresentation

399



http://martinfowler.com/articles/microservice-testing

400



Best Compromise Slideument

Problems: 

— mechanically difficult to 

write prose in speaker’s 

notes 

— people tends towards Bullet 

Riddled Corpse summaries 

Four score and seven years 

ago our fathers brought forth 

on this continent a new nation, 

conceived in liberty, and 

401



(this slide 
intentionally left 

blank)

402



demos vs 
presentations

403



traveling highlights

404



traveling highlights

405



traveling highlights

406



407



dimensions

408



dimensions

409



dimensions

opacity shift

410



dimensions

411



representational 

412



representational 

413



representational 

414



performance anti-
patterns

415



Going Meta
To bore your audience (at best) and 

annoy it (at worst), talk about your 

presentation within the presentation.

416



417



-’s +'s
Shortchanging useful topic time

Talking about something 

only you care about

Negative foreshadowing

0
418



?
419



PATTERNS
Techniques for  Craf t ing Bet ter  Presentat ions

NEAL FORD  |  MATTHEW MCCULLOUGH  |  NATHANIEL SCHUTTA

Presentation

http://presentationpatterns.com

420



architecture katas

documenting and presenting  

your architecture

421



Reactive Architecture 

422



https://github.com/wmr513/reactive

source code

423



reactive architecture

reactive manifesto

responsive

resilient

message driven

elastic

424



reactive manifesto

the system responds in a consistent, rapid, 

and timely manner whenever possible

how the system reacts to users

responsive

resilient

message driven

elastic

reactive architecture

425



reactive manifesto

the system stays responsive after a failure 

through replication, containment, isolation, 

and delegation

how the system reacts to failures

responsive

resilient

message driven

elastic

reactive architecture

426



reactive manifesto

the system stays responsive under 

varying workload

how the system reacts to load

responsive

resilient

message driven

elastic

reactive architecture

427



reactive manifesto

the system relies on asynchronous messaging 

to ensure loose coupling, isolation, location 

transparency, and error delegation

how the system reacts to events

responsive

resilient

message driven

elastic

reactive architecture

428



reactive patterns for self-healing 
systems

event 
producer

event 
dispatcher

thread 
delegate

supervisor

event 
dispatcher

thread 
delegate

event 
dispatcher

thread 
delegate

flow 
monitor

workflow 
processor

thread delegate 

pattern

consumer 

supervisor pattern

workflow event pattern

producer control 

flow pattern

429



Thread Delegate Pattern

430



thread delegate pattern

responsive

resilient

message driven

elastic

how can you ensure timely and consistent 

response time as your system grows?

431



event 
dispatcher

event 
producer

thread delegate pattern

how can you ensure timely and consistent 

response time as your system grows?

thread 
delegate

432



let’s see the issue…

thread delegate pattern

433



thread delegate pattern

thread delegate vs. consumer supervisor

scalability elasticity

consistent consumers variable consumers

decoupled event processors coupled event processors

near-linear performance diminishing performance

434



thread delegate pattern

thread delegate vs. consumer supervisor

435



thread delegate pattern

thread delegate vs. consumer supervisor

scalability elasticity

consistent consumers variable consumers

decoupled event processors coupled event processors

near-linear performance diminishing performance

can preserve message order message order not preserved

436



event 
thread

event 
thread

thread delegate pattern

event 
producer

event 
delegate

preserving message order

437



thread delegate pattern

preserving message order

premise: not every message must be ordered, but rather 

messages within a context must be ordered 

1. PLACE  AAPL A-136 2,000,000.00

2. CANCEL AAPL A-136 2,000,000.00

3. REBOOK AAPL A-136 1,800,000.00

1. PLACE  AAPL A-136 2,000,000.00

4. CANCEL AAPL A-136 2,000,000.00

5. REBOOK AAPL A-136 1,800,000.00

2. PLACE  GOOG V-976   650,000.00

3. CANCEL GOOG V-976   650,000.00

6. REBOOK GOOG V-976   600,000.00

1, 2, 3

1, 4, 5

2, 3, 6

438



event 
thread

event 
thread

thread delegate pattern

event 
producer

event 
delegate

preserving message order

GOOG

AAPL

439



thread delegate pattern

event 
producer

preserving message order

symbol striping

event 
thread

event 
thread

event 
delegate

GOOG

AAPL

A-M

event 
thread

event 
thread

event 
delegate

XLK

XPH

N-Z

440



Dispatcher

while (true) {

  //get the next message from the queue

  //get next available thread

  //send message to thread (or start new thread)

}

thread delegate pattern

441



let’s see the result…

thread delegate pattern

442



Consumer Supervisor Pattern

443



consumer supervisor pattern

how can you react to varying changes in load 

to event consumers to ensure consistent 

response time?

resilient

message driven

elastic

responsive

444



consumer supervisor pattern

how can you react to varying changes in load 

to event consumers to ensure consistent 

response time?

event 
consumer

 event 
channel

supervisor event 
consumer

event 
consumer

event 
consumer

445



let’s see the issue….

consumer supervisor pattern

446



consumer supervisor pattern

event 
consumer

 event 
channel

supervisor event 
consumer

event 
consumer

event 
consumer

determine consumers needed (e.g., depth/2)

add or remove consumers

apply max threshold

periodically monitor queue depth

447



consumer supervisor pattern

List<MyConsumer> consumers = new ArrayList<MyConsumer>();

private void startConsumer() {

   MyConsumer consumer = new MyConsumer();

   consumers.add(consumer);

   new Thread() { public void run() { 

      consumer.startup(connection);

   }}.start();

}

private void stopConsumer() {

  if (consumers.size() > 1) {

    AMQPConsumer consumer = consumers.get(0);

    consumer.shutdown();

    consumers.remove(consumer);

   }

 }

Supervisor.java

448



consumer supervisor pattern

public void execute() throws Exception {

   startConsumer();

   while (true) {

      Thread.sleep(1000);

      long queueDepth = getMessageCount("trade.eq.q");

      long consumersNeeded = queueDepth/2;

      long diff = Math.abs(consumersNeeded - consumers.size());

      for (int i=0;i<diff;i++) {

         if (consumersNeeded > consumers.size()) 

            startConsumer();

         else 

            stopConsumer();

      }

   }

 }

Supervisor.java

449



let’s see the result…

consumer supervisor pattern

450



Workflow Event Pattern

451



workflow event pattern

responsive

resilient

message driven

elastic

how can you handle error conditions without 

failing the transaction?

452



event 
consumer

event 
producer

workflow 
processor

workflow event pattern

how can you handle error conditions without 

failing the transaction?

453



let’s see the issue…

workflow event pattern

454



workflow event pattern

example

while asynchronously processing trades an error 

occurs with one of the trade orders

trade 
processor

trading 
client

workflow 
processor

X

455



workflow event pattern

trade 
processor

trading 
client

workflow 
processor

X
send error to queue

programmatically fix error

resubmit to processing queue

send error to dashboard

human fixes error

resubmit to processing queue

456



Workflow.java

//get next message from queue

String newMsg = msg.substring(0, msg.indexOf(" shares"));

//resubmit message

workflow event pattern

457



let’s see the result…

consumer supervisor pattern

458



Producer Control Flow 
Pattern

459



producer control flow pattern

how can you slow down message producers 

when the messaging system becomes 

overwhelmed?

responsive

resilient

message driven

elastic

460



 event 
channel

event 
consumer

event 
producer

producer control flow pattern

how can you slow down message producers 

when the messaging system becomes 

overwhelmed?

flow 
monitor

 slow down!

461



producer control flow pattern

how can you slow down message producers 

when the messaging system becomes 

overwhelmed?

shutdown (broker) vs. slowdown (pattern)

462



let’s see the issue….

producer control flow pattern

463



producer control flow pattern

 event 
channel

event 
consumer

event 
producer

flow 
monitor

wait for upper threshold

tell producers to slow down

wait for lower threshold

tell producers to resume

464



FlowMonitor.java

public void execute() throws Exception {

   long threshold = 10;

   boolean controlFlow = false;

   while (true) {

      Thread.sleep(3000);

      long queueDepth = getMessageCount("trade.eq.q");

      if (queueDepth > threshold && !controlFlow) {

         controlFlow = enableControlFlow(channel);

      } else if (queueDepth <= (threshold/2) && controlFlow) {

         controlFlow = disableControlFlow(channel);

      }

   }

}

producer control flow pattern

465



FlowMonitor.java

private boolean enableControlFlow(Channel channel) {

   byte[] msg = String.valueOf(true).getBytes();

   //send message to producer

   return true;

}

producer control flow pattern

private boolean disableControlFlow(Channel channel) {

   byte[] msg = String.valueOf(false).getBytes();

   //send message to producer

   return false;

}

466



Producer.java

public void startListener() {

   new Thread() { 

     public void run() { 

     while (true) {

        //wait for message from flow monitor

        boolean controlFlow = 

          new Boolean(new String(msg.getBody())).booleanValue();

        synchronized(delay) { delay = controlFlow ? 3000 : 0; }

      }

   }}.start();

}

producer control flow pattern

private void produceMessages() {
   Thread.sleep(delay);

   //send trade to queue...   

}

467



let’s see the result…

producer control flow pattern

468



reactive patterns for self-healing 
systems

event 
producer

thread 
delegate

supervisor

event 
dispatcher

thread 
delegate

event 
dispatcher

thread 
delegate

flow 
monitor

workflow 
processor

thread delegate 

pattern

consumer 

supervisor pattern

workflow event pattern

producer control 

flow pattern

469



Evolutionary 

Architectures

@neal4d 

nealford.com

with Rebecca Parsons & Pat Kua

470



Rebecca Parsons

Pat Kua

Neal Ford

Photos by Martin Fowler: 

http://martinfowler.com/albums/ThoughtWorkers/
471



472



Dynamic Equilibrium

473



Definition :

An evolutionary architecture supports incremental, 

guided change as a first principle across multiple 

dimensions. 

474



Dimensions of Architecture:

 Technical:  The implementation parts of the 

architecture 

 Data: Database schemas, table layouts, 

optimization planning, etc. 

 Security:  Defines security policies, guidelines, 

and specifies tools to help uncover deficiencies. 

 Domain:  Domain

475



           Driven Design Domain

476



Bounded Context

+

477



Evolvability of Architectures

478



Big Ball of Mud

classes

coupling connections 0dimensions :
479



Layered Architecture

  presentation layer

  business layer

  persistence layer

  database layer

component component component

component component component

component component component

1dimensions :

opportunities: 4

480



Layered Architecture

  presentation layer

  business layer

  persistence layer

  database layer

component component

component component

component component

component

component

component

request

481



Layered Architecture

  persistence layer component component component

  database layer

  presentation layer

  business layer

component component component

component component component

  services layer component component component

opportunities for evolution = L - (2 x Lo) 

L : # of layers 

Lo : # of open layers 1dimensions :
482



Microkernel

plug-in 

component

plug-in 

component

plug-in 

component

plug-in 

component

plug-in 

component

plug-in 

component

core 

system

1dimensions :
483



REST

1dimensions :

484



Domain Shift

0domain dimensions :
485



Microservices

ndimensions :evolutionary architecture
486



Definition :

An evolutionary architecture supports incremental, 

guided change as a first principle across multiple 

dimensions. 

evolutionary architecture

487



Composability

488



Composability

489



Composability

490



Definition :

An evolutionary architecture supports incremental, 

guided change as a first principle across multiple 

dimensions. 

evolutionary architecture

491



Incremental Change

production

Components are 

deployed.

Features are released.

Applications consist 

of routing.

492



Incremental Change

production

493



Definition :

An evolutionary architecture supports incremental, 

guided change as a first principle across multiple 

dimensions. 

evolutionary architecture

494



Architecture Fitness Function

metrics

tests

495



Scope

application 

integration

process

496



Consumer Driven Contracts
martinfowler.com/articles/consumerDrivenContracts.html

497



Scope

application 

integration

process

498



Cycle Fitness Function

clarkware.com/software/JDepend.html

499



Coupling Fitness Function

500



Scope

application 

integration

process

501



Fitness Function Fit

502



Guided Evolution

503



Definition :

An evolutionary architecture supports incremental, 

guided change as a first principle across multiple 

dimensions. 

evolutionary architecture

504



utilizing evolutionary 
architecture

505



1. choose dimensions

“—ilities”
evolutionary 

change

testable

506



2. identify fitness functions

atomic

holistic

/
automated / manual

507



3. apply incremental change

508



initial & continual

509



architecture katas

identifying evolutionary  
architecture factors

510



next steps

511



next steps

certification  

nomination packet

personal radar

technical breadth

512



next steps

www.infoq.com www.dzone.com

https://www.thoughtworks.com/radar

513



next steps

x
514



Software Architecture Fundamentals Video Series              
Enterprise Messaging Video Series              

515



O’Reilly Free Reports

http://www.wmrichards.com/publications

516



Microservices AntiPatterns and Pitfalls Video

http://shop.oreilly.com/product/

0636920052876.do#

517



www.wmrichards.com

518



nealford.com

@neal4d

519



http://evolutionaryarchitecture.com
520



Creating Software Architectures
NFJS Architecture Training

Hands-on Software Architect
Published Author / Conference Speaker

Mark Richards

http://www.wmrichards.com

https://www.linkedin.com/in/markrichards3
@markrichardssa

SDD Deep Dive 2016

ThoughtWorks
Director / Software Architect / Meme Wrangler

Neal Ford

http://www.nealford.com
@neal4d

521


