
Software Architecture

Fundamentals Workshop

Part 1: From Developer to Architect

Mark Richards
Independent Consultant

Hands-on Enterprise / Integration Architect

Published Author / Conference Speaker

http://www.wmrichards.com

http://www.linkedin.com/pub/mark-richards/0/121/5b9

agenda

nealford.com/katas/

Programmers know

the benefits of

everything and the

tradeoffs of nothing.

Architects must understand both.

software architecture?

“the highest level concept of a system in its

environment. The architecture of a software

system (at a given point in time) is its

organization or structure of significant

components interacting through interfaces,

those components being composed of

successively smaller components and

interfaces.”

Rational Unified Process definition, working off the IEEE definition

http://martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf

software architecture?

http://martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf

Architecture is the highest level

concept of the expert developers.

“In most successful software projects, the expert developers

working on that project have a shared understanding of the

system design. This shared understanding is called

‘architecture.’ This understanding includes how the system is

divided into components and how the components interact

through interfaces. These components are usually

composed of smaller components, but the architecture only

includes the components and interfaces that are understood

by all the developers.”

software architecture?

Architecture is about the important stuff.

Whatever that is.

http://martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf

Martin Fowler

developers product

owner

operations

soft skills

intern

jr. developer

developer

sr. developer

architect

hermit

cave dweller

loner

withdrawn

shy

technical skills

social skills

Don Juan

Decisions

what is an architecture decision?

architecture decisions

le
v
e
l
o

f
d

if
fi

cu
lt

y

implementation design architecture

architecture decisions

hard

moderate

easy

very hard

type of change

an architect is responsible for defining

the architecture and design principles

used to guide technology decisions

architecture decisions

architecture decisions

the decision to use java server faces

as your web framework

the decision to use a web-based user

interface for your application

vs.

architecture decisions

the decision that components should

be distributed remotely for better

scalability

the decision to use rest to communicate

between distributed components

vs.

justifying

 architecture decisions

 no one understands why a decision was made so it

keeps getting discussed over and over and over...

groundhog day anti-pattern

justifying decisions

the scenario

justifying decisions

internal

client

integration

hub

jms

destination

internal

application

internal jms

destination

internal

application

external

b2b
integration

hub

the requirement: you need to federate the hub

justifying decisions

internal internal

application

b2b

external

integration

hub

jms

destination

the decision: dedicated broker instances?

justifying decisions

internal jms

destination

internal

application

b2b

external

integration

hub

the decision: centralized broker

justifying decisions

broker only used for hub access

low transaction volumes expected

application logic may be shared

between different types of client

applications (e.g., internal and

external)

identify the conditions and constraints

justifying decisions

conditions and constraints:

broker usage and purpose

overall message throughput

internal application coupling

analyze each option based on conditions

justifying decisions

considerations:

single point of failure

performance bottleneck

justification:

the internal applications should not have to know from which

broker instance the request came from.

only a single broker connection is needed, allowing for the

expansion of additional hub instances with no application changes.

due to low request volumes the performance bottleneck is not an

issue; single point of failure can be addressed through failover

nodes or clustering.

architecture decision:

centralized broker

justifying decisions

documenting and

communicating

 architecture decisions

Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone

Fred Flintstone

identifying architecture
characteristics

 translation skills

architecture characteristics

reliability

scalability

performance

availability

sa
mpli

ng
System Quality Attributes

accessibility evolvability repeatability

accountability extensibility reproducibility

accuracy failure transparency resilience

adaptability fault-tolerance responsiveness

administrability fidelity reusability

affordability flexibility robustness

agility inspectability safety

auditability installability scalability

autonomy integrity seamlessness

availability interchangeability self-sustainability

compatibility interoperability serviceability

composability learnability supportability

configurability maintainability securability

correctness manageability simplicity

credibility mobility stability

customizability modifiability standards compliance

debugability modularity survivability

degradability operability sustainability

determinability orthogonality tailorability

demonstrability portability testability

dependability precision timeliness

deployability predictability traceability

discoverability process capabilities transparency

distributability producibility ubiquity

durability provability understandability

effectiveness recoverability upgradability

efficiency relevance usability

reliability

https://en.wikipedia.org/wiki/List_of_system_quality_attributes

“our business is constantly changing

to meet new demands of the

marketplace”

???

architecture characteristics

“due to new regulatory requirements,

it is imperative that we complete end-

of-day processing in time”

???

architecture characteristics

“we need faster time to market to

remain competitive”

???

architecture characteristics

“our plan is to engage heavily in

mergers and acquisitions in the next

three years”

???

architecture characteristics

“we have a very tight timeframe and

budget for this project”

???

architecture characteristics

feasibility

agility

elasticity

scalability

architecture characteristics

Architecture Patterns

architecture patterns help define the basic

characteristics and behavior of the

application

architecture pattern classification

distributed

monolithic

microkernel pipeline

event-driven

service-based service-oriented

microservices space-based

layered

persistence layer

architecture pattern hybrids

event-driven microservices

space-based microservices

event-driven layered

persistence layer

layered microkernel

persistence layer

architecture pattern roadmap

microservices

architecture

space-based

architecture
service-oriented

architecture

microkernel

architecture

service-based

architecture

event-driven

architecture
pipeline

architecture

layered

architecture

persistence layer

architecture pattern roadmap

microservices

architecture

space-based

architecture
service-oriented

architecture

microkernel

architecture

service-based

architecture

event-driven

architecture
pipeline

architecture

layered

architecture

persistence layer

layered architecture

 presentation layer

 business layer

 persistence layer

 database layer

component component component

component component component

component component component

 presentation layer

 business layer

 persistence layer

 database layer

component component

component component

component component

component

component

component

layered architecture

request

layered architecture

 presentation layer

 business layer

 persistence layer

 database layer

component component component

component component component

component component component

separation of concerns

layered architecture

 presentation layer component component component

 business layer component component component

 persistence layer component component component

 database layer

layers of isolation

 database layer

 presentation layer component component component

 persistence layer component component component

 business layer component component component

 persistence layer component component component

 database layer

layered architecture

 presentation layer

 business layer

component component component

component component component

hybrids and variants

 services layer component component component

 persistence layer component component component

 database layer

layered architecture

 presentation layer

 business layer

component component component

component component component

hybrids and variants

 services layer component component component

 agility deployment testability performance scalability simplicity cost

layered architecture

architecture pattern roadmap

microservices

architecture

space-based

architecture
service-oriented

architecture

microkernel

architecture

service-based

architecture

event-driven

architecture
pipeline

architecture

layered

architecture

persistence layer

architecture pattern roadmap

microservices

architecture

space-based

architecture
service-oriented

architecture

microkernel

architecture

service-based

architecture

event-driven

architecture
pipeline

architecture

layered

architecture

persistence layer

microkernel architecture

plug-in

component

plug-in

component

plug-in

component

plug-in

component

plug-in

component

plug-in

component

core

system

(a.k.a. plug-in architecture pattern)

microkernel architecture

plug-in

module

core

system

architectural components

minimal functionality to run system

general business rules and logic

no custom processing

standalone independent module

specific additional rules or logic

microkernel architecture

claims processing

MA

module

NY

module

CA

module

GA

module

NH

module

TX

module

NY

module

microkernel architecture

plug-in

component 1

plug-in

component 2

plug-in

component 3

plug-in

component 4

core system

registry

registry

1: <location>, <contract>
2: <location>, <contract>
3: <location>, <contract>
4: <location>, <contract>

microkernel architecture

plug-in

component 1

plug-in

component 2

plug-in

component 3

plug-in

component 4

core system

plug-in contracts

std

std

std

std

microkernel architecture

 agility deployment testability performance scalability simplicity cost

microkernel architecture

architecture pattern roadmap

microservices

architecture

space-based

architecture
service-oriented

architecture

microkernel

architecture

service-based

architecture

event-driven

architecture
pipeline

architecture

layered

architecture

persistence layer

architecture pattern roadmap

microservices

architecture

space-based

architecture
service-oriented

architecture

microkernel

architecture

service-based

architecture

event-driven

architecture
pipeline

architecture

layered

architecture

persistence layer

event-driven architecture

mediator topologybroker topology

 event
channel

 event
channel

 event
channel

broker topology

event processor
event

module module

module module

processor
event

module module

module module

processor
event

module module

module module

processor
event

module module

module module

processor
event

module module

module module

event-driven architecture

you move...

customer process

notification process adjustment process

quote process claims process

you

moved!

change

address

recalc

quote

update

claims

change

address

update

claims

event-driven architecture

 event
queue

event-driven architecture

mediator
event

 event
channel

 event
channel

 event
channel

mediator topology

event

processor
event

module module

module module

processor
event

module module

module module

processor
event

module module

module module

processor
event

module module

module module

processor
event

module module

module module

process engine

adjustment

process

notification

process

quote

process

claims

process

customer

process

you move...

you

moved

notify

insurednotify

insured

change

address

recalc

quote

update

claims

adjust

claimschange

address

recalc

quote

update

claims

adjust

claims

event-driven architecture

 agility deployment testability performance scalability simplicity cost

event-driven architecture

architecture pattern roadmap

microservices

architecture

space-based

architecture
service-oriented

architecture

microkernel

architecture

service-based

architecture

event-driven

architecture
pipeline

architecture

layered

architecture

persistence layer

architecture pattern roadmap

microservices

architecture

space-based

architecture
service-oriented

architecture

microkernel

architecture

service-based

architecture

event-driven

architecture
pipeline

architecture

layered

architecture

persistence layer

filter filter

filter filter

filter
pipe pipe

pipe

pipe

(a.k.a. pipe and filter architecture)

pipeline architecture

pipes

 transformer
pipepipe

 uni-directional only

 usually point-to-point for high performance, but could

be message-based for scalability

 payload can be any type (text, bytes, object, etc.)

pipeline architecture

filters

filter
pipepipe

 self-contained and independent from other filters

 usually designed to perform a single specific task

 four filter types (producer, consumer, transformer, and

tester

pipeline architecture

filters

pipe
starting point, outbound onlyproducer

 transformer
pipepipe

input, processing, output

tester
pipepipe

input, discard or pass-thru

consumer
pipe

ending point, inbound only

pipeline architecture

text capture
text

text converter
xml

process engine

example: capture data in multiple formats, process

the data, and send to multiple outputs

json capture
json

json converter
xml

file output

processed

xml

output director

db output

pipeline architecture

 agility deployment testability performance scalability simplicity cost

pipeline architecture

architecture pattern roadmap

microservices

architecture

space-based

architecture
service-oriented

architecture

microkernel

architecture

service-based

architecture

event-driven

architecture
pipeline

architecture

layered

architecture

persistence layer

architecture pattern roadmap

microservices

architecture

space-based

architecture
service-oriented

architecture

microkernel

architecture

service-based

architecture

event-driven

architecture
pipeline

architecture

layered

architecture

persistence layer

let's talk about scalability for a moment...

web server app server

web server

web server

web server

web server

web server

web server

app server

app server

app server

app server

space-based architecture

space-based architecture

db

processing unitprocessing unit processing unit

virtualized middleware

...

messaging

grid
data grid

processing

grid

deployment

manager

processing unit

processing unit

module module module

data replication engine

space-based architecture

in memory data grid

middleware

messaging

grid

data grid

processing

grid

deployment

manager

space-based architecture

middleware

messaging

grid

data grid

processing

grid

deployment

manager

manages input request and session

space-based architecture

middleware

messaging

grid

data grid

processing

grid

deployment

manager

manages data replication between

processing units

space-based architecture

------------------------ ------------ ------------

middleware

messaging

grid

data grid

processing

grid

deployment

manager

manages distributed

request processing

space-based architecture

middleware

messaging

grid

data grid

processing

grid

deployment

manager

manages dynamic processing unit

deployment

space-based architecture

product implementations

javaspaces

gigaspaces

ibm object grid

gemfire

ncache

oracle coherence

space-based architecture

 it's all about variable scalability...

 good for applications that have 

variable load or inconsistent peak  

times

 not a good fit for traditional large-scale relational

database systems

 relatively complex and expensive pattern to implement

space-based architecture

 agility deployment testability performance scalability simplicity cost

space-based architecture

architecture pattern roadmap

microservices

architecture

space-based

architecture
service-oriented

architecture

microkernel

architecture

service-based

architecture

event-driven

architecture
pipeline

architecture

layered

architecture

persistence layer

architecture pattern roadmap

microservices

architecture

space-based

architecture
service-oriented

architecture

microkernel

architecture

service-based

architecture

event-driven

architecture
pipeline

architecture

layered

architecture

persistence layer

microservices architecture

microservices architecture

distributed

api layer

client requests client requests client requests

microservices architecture

microservices architecture

service

consumer

(C#/.NET)

service

consumer

(Java)

service

consumer

(Java)

REST REST REST

service

(Java)

service

(Java)

service

(C#/.NET)

protocol-aware heterogeneous interoperability

microservices architecture

distributed

separately

deployed

api layer

client requests client requests client requests

microservices architecture

microservices architecture

SERVICE REGISTRY

AND DISCOVERY

SECURITY AND

COMPLIANCE
LOAD BALANCING

DEPLOYMENT
INTER-SERVICE

COMMUNICATION
NETWORK

MONITORING

CONTINUOUS

INTEGRATION

INFRASTRUCTURE

AUTOMATION

PLATFORM

MANAGEMENT

CONTAINER REGISTRY API MANAGEMENT

CLOUD MANAGEMENT OPERATING SYSTEM
DATABASE

MANAGEMENT

SERVICE OPTIMIZATION

microservices architecture

distributed

separately

deployed

service

component

api layer

client requests client requests client requests

microservices architecture

microservices architecture

api layer

client requests client requests client requests

infrastructure services
functional services

messaging services

what is the right size for a microservice?

purpose transactions choreography

microservices architecture

service scope and function

(single-purpose function)

purpose

microservices architecture

transactions

no acid

transaction

microservices architecture

api layer

choreography

microservices architecture

microservices architecture

distributed

separately

deployed

service

component
bounded

context

api layer

client requests client requests client requests

microservices architecture

api layer

client requests client requests client requests

data replication

microservices architecture

microservices architecture

distributed

separately

deployed

service

component
bounded

context

data

domains

api layer

client requests client requests client requests

microservices architecture

api layer

client requests client requests client requests

microservices architecture

assumes low rate of schema changes (or use of noSQL)

increases performance and overall reliability

reduces data duplication

microservices architecture

microservices architecture

distributed

separately

deployed

service

component
bounded

context

data

domains

api layer

api layer

hides the actual endpoint of the service, exposing

only those services available for public consumption

api layer

api layer

feature toggle

api layer

api layer

microservices architecture

api layer

endpoint proxy

api layer

load balancer

api layer

gateway (integration hub)

microservices architecture

distributed

separately

deployed

service

component
bounded

context

data

domains

event driven

api layer

api layer

client requests client requests client requests

microservices architecture

asynchronous communications

service
client

microservices architecture

broadcast capabilities

microservices architecture

transactional capabilities

commit

microservices architecture

transactional capabilities

rollback

X

microservices architecture

reporting techniques

eventual consistency patterns

performance tuning

reactive architecture patterns

microservices architecture

 agility deployment testability performance scalability simplicity cost

microservices architecture

pipeline architecture

pipeline vs. event-driven

synchronous data

filtering

asynchronous event

processing

always unidirectional can be request/reply

simple single purpose

filters

complex multi-purpose

processors

architecture pattern roadmap

microservices

architecture

space-based

architecture
service-oriented

architecture

microkernel

architecture

service-based

architecture

event-driven

architecture
pipeline

architecture

layered

architecture

persistence layer

architecture pattern roadmap

microservices

architecture

space-based

architecture
service-oriented

architecture

microkernel

architecture

service-based

architecture

event-driven

architecture
pipeline

architecture

layered

architecture

persistence layer

 message bus

process choreographer

service orchestrator

 business services BS BS BS BS BS BS

 enterprise services ES ES ES ES ES ES

 application services AS infrastructure services IS

service-oriented architecture

enterprise

scope

service-oriented architecture

enterprise

scope

service

taxonomy

service-oriented architecture

 message bus

process choreographer

service orchestrator

 business services BS BS BS BS BS BS

 enterprise services ES ES ES ES ES ES

 application services AS infrastructure services IS

service-oriented architecture

 message bus

process choreographer

service orchestrator

 business services BS BS BS BS BS BS

 enterprise services ES ES ES ES ES ES

 application services AS infrastructure services IS

service-oriented architecture

business services

 message bus

process choreographer

service orchestrator

 business services BS BS BS BS BS BS

 enterprise services ES ES ES ES ES ES

 application services AS infrastructure services IS

service-oriented architecture

enterprise services

 message bus

process choreographer

service orchestrator

 business services BS BS BS BS BS BS

 enterprise services ES ES ES ES ES ES

 application services AS infrastructure services IS

service-oriented architecture

application services

 message bus

process choreographer

service orchestrator

 business services BS BS BS BS BS BS

 enterprise services ES ES ES ES ES ES

 application services AS infrastructure services IS

service-oriented architecture

infrastructure services

enterprise

scope

service

taxonomy

shared

resources

service-oriented architecture

service-oriented architecture

shared resources

auto and

homeowners

insurance

division

commercial

insurance

division

casualty

insurance

division

life

insurance

division

disability

insurance

division

travel

insurance

division

customer

customer

customer

customer

customer

customer

customer

service

enterprise

scope

service

taxonomy

shared

resources

heterogeneous

integration

service-oriented architecture

messaging middleware

protocol-agnostic heterogeneous interoperability

service-oriented architecture

REST AMQP REST

service

consumer

(C#/.NET)

service

consumer

(Java)

service

consumer

(Java)

service

(EJB3)

service

(C++/Tux)

service

(Java)

RMI ATMI SOAP

enterprise

scope

service

taxonomy

shared

resources

heterogeneous

integration

contract

decoupling

service-oriented architecture

 message bus

process choreographer

service orchestrator

 business services BS BS BS BS BS BS

service-oriented architecture

 enterprise services ES ES ES ES ES ES

 application services AS infrastructure services IS

business

service

enterprise

service
servic

enhancement and

transformation

cusip

mm/dd/yy

sedol

yyyy.mm.dd

symbol

contract decoupling

service-oriented architecture

037833100

09/12/16

xml

037833100

09/12/16

xml

2046251

2016.09.12

AAPL

java

2046251

2016.09.12

AAPL

java

enterprise

scope

service

taxonomy

shared

resources

heterogeneous

integration

abstraction

(api layers)

contract

decoupling

service-oriented architecture

api layer api layer

api

layer

ES

ES

ES

ES

ES

ES

client requests
BS

BS

integration hub

service-oriented architecture

 agility deployment testability performance scalability simplicity cost

service-oriented architecture

architecture pattern roadmap

microservices

architecture

space-based

architecture
service-oriented

architecture

microkernel

architecture

service-based

architecture

event-driven

architecture
pipeline

architecture

layered

architecture

persistence layer

architecture pattern roadmap

microservices

architecture

space-based

architecture
service-oriented

architecture

microkernel

architecture

service-based

architecture

event-driven

architecture
pipeline

architecture

layered

architecture

persistence layer

service-oriented

architecture

microservices

architecture

is there a middle ground?

service-based architecture

service-based

architecture

business applications?

service-based architecture

service-based architecture

deployment

pipeline

service-based architecture

service

granularity

database

scope

api layer

client requests client requests client requests

service granularity

service-based architecture

user interface layer

client requests client requests client requests

service granularity

service-based architecture

service granularity

service-based architecture

food stamp service

emergency cash service

utility assistance service

child care assist service

health care assist service

nursing facility care service
...

benefit service

advantages

service granularity

unit of work transactional context

performance and robustness

service-based architecture

domain scope

shared resources

tradeoffs

service granularity

service-based architecture

services development and testing

deployment pipeline planning

change control

database scope

api layer

client requests client requests client requests

service-based architecture

database scope

user interface layer

client requests client requests client requests

service-based architecture

database scope

user interface layer

client requests client requests client requests

service-based architecture

database scope

service-based architecture

food stamp db

emergency cash db

utility assistance db

child care assist db

health care assist db

nursing facility care db
...

shared common db

performance (joins, orchestration, choreography)

database scope

feasibility

service-based architecture

advantages

bounded context

service coupling based on schema

database scope

schema changes

service-based architecture

tradeoffs

deployment pipeline

service-based architecture

service-based architecture

deployment pipeline

no devops complexity

minimal organizational change

service-based architecture

deployment pipeline

advantages

service-based architecture

deployment pipeline

lack of quick and effective deployments

additional risk and coordination needed

poor continuous delivery model

tradeoffs

electronics recycling application

kiosk

quote
accounting

reporting

item status assessment

receiving

recycling

public requests receiving department recycling and accounting

electronics recycling application

public uikiosk receiving ui recycling ui

adding microservices

user interface layer

client requests client requests client requests

service-based architecture

adding microservices

user interface layer

client requests client requests client requests

service-based architecture

adding microservices

user interface layer

client requests client requests client requests

service-based architecture

 agility deployment testability performance scalability simplicity cost

service-based architecture

LMAX

LMAX

 JVM-based retail financial trading

platform

 centers on Business Logic Processor

handling 6,000,000 orders/sec on 1

thread

 surrounded by Disruptors, network of

lock-less queues

http://martinfowler.com/articles/lmax.html

overall structure

— single-threaded Java app

— relies only on JVM

— easy to test

Business
Logic

Processor

business logic processorBusiness
Logic

Processor

 in-memory

 event sourcing via input disruptor

 snapshots (full restart—JVM + snapshots
— less than 1 min)

 multiple instances running

 each event processed by multiple
processors but only one result used

input/output disruptors

disruptors

 custom concurrency component

 multi-cast graph of queues where

producers enqueue objects and

consumers dequeue in parallel

 ring buffer with sequence counters

20x106 slots for input buffer

4x106 slots for output buffer

“mechanical sympathy”

 started with transactions

 switched to Actor-based concurrency

 hypothesized & measured results

 CPU caching is key ➠ single writer

principle

architecture katas

identifying architecture
patterns

component-based thinking

component identification
and granularity

component identification

as an architect, you should think about the artifacts

within the architecture in terms of components

component:

an encapsulated unit of software

that has a well defined interface

and a clear and concise role and

responsibility statement

component

component

component

component

component

subsystem, layer, or service

component component component

component scope

module

module

module

module

module

module

component identification

Message Structure

roles and responsibility model

component identification

Message Structure

message

dispatcher
compliance

controller

trader limits

restriction

stock trade order validation

component identification

Message Structure

message

dispatcher
compliance

controller

trader limits

restriction

stock trade order validation

responsible for dispatching the trade to the next

available controller.

component identification

Message Structure

message

dispatcher
compliance

controller

trader limits

restriction

stock trade order validation

responsible for orchestrating the trade order

validation process by calling specific compliance

processors.

component identification

Message Structure

message

dispatcher
compliance

controller

trader limits

restriction

stock trade order validation

responsible for making sure the trader isn't

exceeding assigned trader limits for the

trade being placed.

component identification

Message Structure

message

dispatcher
compliance

controller

trader limits

restriction

stock trade order validation

responsible for making sure the trade order

symbol isn't on the restricted stock list.

component identification

Message Structure

message

dispatcher
compliance

controller

trader limits

restriction

stock trade order validation

who should be responsible for retrieving and

caching all of the data needed by the

compliance processors?

?

?
?

component identification

Message Structure

message

dispatcher
compliance

controller

trader limits

restriction

stock trade order validation

responsible for orchestrating the trade order validation

process by calling specific compliance processors. also

responsible for retrieving and caching all data needed by

the compliance processors

component identification

Message Structure

message

dispatcher
compliance

controller

trader limits

restriction

stock trade order validation

who should be responsible for persisting

trade validation errors when they occur?

?

?
?

component identification

Message Structure

message

dispatcher
compliance

controller

trader limits

restriction

stock trade order validation

responsible for orchestrating the trade order validation

process by calling specific compliance processors. also

responsible for retrieving and caching all data needed by

the compliance processors and persisting all validation

errors.

component identification

Message Structure

message

dispatcher
compliance

controller

trader limits

restriction

stock trade order validation

component identification

Message Structure

message

dispatcher
compliance

controller

trader limits

restriction

stock trade order validation

data

manager

component identification

Message Structure

message

dispatcher
compliance

controller

trader limits

restriction

stock trade order validation

data

manager

responsible for retrieving and caching all data needed by

the compliance processors and persisting all validation

errors.

component identification

Message Structure

message

dispatcher
compliance

controller

trader limits

restriction

stock trade order validation

data

manager

responsible for orchestrating the trade order validation

process by calling specific compliance processors.

component identification

component identification

identify

initial core

components

analyze roles and

responsibility

statements

analyze

non-functional

aspects

refactor

components

assign user

stories to

components

identify initial components using core functionality

order placementplace orders

ship orders

track orders

order shipment

order tracking

component identification

component identification

assign requirements, use cases, or user

stories to a component

order placementuser story: check inventory

user story: validate order

user story: notify customer

order placement

customer notification

service identification

identify coarse-

grained functional

areas

create coarse-

grained

microservices

map services to
data tables

service identification

identify coarse-

grained functional

areas

create coarse-

grained

microservices

map services to
data tables

identify data

overlaps and

dependencies

refine services
and data

component granularity

order manager

responsible for creating, deleting, and updating orders.

also responsible for shipping the order and tracking the

order once it has been shipped. this component is also

responsible for notifying the customer each time the order

status changes.

component identification

component granularity

order manager

order maintenance

order shipment

customer notification

responsible for creating, deleting,

and updating orders.

responsible for shipping and

tracking orders

responsible for notifying the customer

when the order status changes.

component identification

component coupling

component coupling

the extent to which components know

about each other

component component

component

afferent coupling

the degree to which other components are

dependent on the target component

component a

component d

component b

component c

component coupling

efferent coupling

the degree to which the target component

is dependent on other components

component a

component d

component b

component c

component coupling

temporal coupling

functionality is grouped into one component due

to timing dependencies (e.g. transactions)

component coupling

component a

component b component c

component a

component b component c

tight

coupling

loose

coupling

component coupling

external

coupling

control

coupling

data

coupling
pathological

coupling

component b component a

pathological coupling

one component relies on the inner

workings of another component

X

component coupling

external coupling

multiple components share an externally

imposed protocol or data format

component coupling

component a component a
rest

control coupling

one component passes information to

another component on what to do

component coupling

component b component a

data coupling

component coupling

the degree to which components are

bound to a shared data context

component a component b component c

struts 1.0

component coupling

consequences of ignoring…

struts 2

component cohesion

the degree and manner to which the operations of a

component are related to one another

customer

maintenance

add customer

update customer

get customer

notify customer

get customer orders

cancel customer orders

component cohesion

the degree and manner to which the operations of a

component are related to one another

customer

maintenance

add customer

update customer

get customer

notify customer

get customer orders

cancel customer orders
order

maintenance

component cohesion

architecture katas

identifying major architecture
components

documenting software
architectures

documentation

weight in bytes

motivation

agile architecture

Not all decisions made up front.

project timeline

diagraming techniques

http://www.codingthearchitecture.com

Titles

Short and meaningful, numbered if

diagram order is important

Lines

Favor unidirectional arrows, add

descriptive text to provide

additional information

Layout

Sticky notes and index cards make a

great substitute for drawn boxes,

especially early on

Labels

Be wary of using acronyms, especially

those related to the business/domain

that you work in

Color

Ensure that color coding is made explicit;

watch out for color-blindness and

black/white printers

 message bus

process choreographer

service orchestrator

 business services BS BS BS BS BS BS

 enterprise services ES ES ES ES ES ES

 application services AS infrastructure services IS

CreateQuote

message bus

CreateCustomer CalcQuote

AddDriver AddVehicle

message bus

CheckDMV

message bus

WriteAudit

message bus

Color

Ensure that color coding is made explicit;

watch out for color-blindness and

black/white printers

Orientation

Most important thing in the middle;

be consistent across diagrams

Shapes

Don’t assume that people will

understand what different shapes

are being used for

Shapes

Be consistent.

Shapes

Be consistent.

Keys

Explain shapes, lines, colors,

borders, acronyms, etc

Representational

Consistency

Don’t abruptly change scale on diagrams;

provide context for where this portion fits

into the bigger picture

db

processing unitprocessing unit processing unit

virtualized middleware

messaging

grid
data grid

processing

grid

deployment

manager

messaging

grid

data grid

processing

grid

deployment

manager

d

procesproces proces

virtualized

Representational

Consistency

Don’t abruptly change scale on diagrams;

provide context for where this portion fits

into the bigger picture

Comprehensive Diagram

Don’t try to capture the entirety of software

architecture in a single diagram; create

dimensional views instead

Comprehensive Diagram

Don’t try to capture the entirety of software

architecture in a single diagram; create

dimensional views instead

Architecture Decision Records

http://thinkrelevance.com/blog/2011/11/15/documenting-architecture-decisions

We will keep a collection of records for

"architecturally significant" decisions: those that

affect the structure, non-functional characteristics,

dependencies, interfaces, or construction techniques.

Architecture Decision Records

doc/arch/adr-NNN.mdTextile

asciidoc
numbered

sequentially
no number

reused

short text

file

reversed ADR kept—

marked superseded

semantic
versioning

Architecture Decision Records

 Title: short noun phrase

 Context: forces at play

 Decision: response to forces

 Status: proposed, accepted, superseded

 Consequences: context after decision is

applied

ADR Tool

https://github.com/npryce/adr-tools

architecture katas

documenting
your architecture

Technical Writing Skills

Software is more about

communication than

technology.

Know Your Audience

practical

vs.

classic style

passive voice

 Passive voice occurs when you make the

object of an action into the subject of a

sentence.

 Why was the road crossed by the chicken?

examples
The metropolis has been scorched by the

dragon's fiery breath.
The dragon scorched the metropolis with

his fiery breath.

After suitors invaded her house, Penelope

had to think of ways to delay her

remarriage.

When her house was invaded, Penelope

had to think of ways to delay her

remarriage.

more examples

Researchers have concluded that heart disease

is the leading cause of death in the United

States.

Heart disease is considered the leading cause

of death in the United States.

Research points to heart disease as the leading

cause of death in the United States.

The surgeon positions the balloon in an area of

blockage and inflates it.

The balloon is positioned in an area of

blockage and is inflated.

passive voice myths

 1. Use of the passive voice constitutes a grammatical

error.

 2. Any use of "to be" (in any form) constitutes the

passive voice.

 3. The passive voice always avoids the first person.

 4. You should never use the passive voice.

 5. I can rely on my grammar checker to catch the

passive voice.

“swindles & perversions”

use of language shapes clarity and

meaning

Mistakes were made.

 The Exxon Company accepts that a few

gallons might have been spilled.

some people use the passive voice to

avoid mentioning responsibility for certain

actions

it’s common

Your phone will join known

networks automatically.

Your phone automatically

joins known networks.

If no known networks are

available, you must

manually select a network.

the most important rule:

revise!

 all important documentation

 proposals

 emails !

 all written correspondence

revise!

technical writing

 simple, declarative sentences

 draft & rewrite

 …and rewrite and rewrite and rewrite…

 spell check!

 have someone else read it for clarity

Continuous Delivery

continuous delivery ∩ architect

Manage

coupling intelligently.

Architecture is abstract

until operationalized

Expanding role

of architect.Understanding

shifting structure.

Mature engineering

practices.

agile 101

Iteration 0 1 2 3 4

Analysis + Design

Development

Testing + Showcase

Integration + QA Release and operation

Customer

Centralized QA IT Operations

"Agile" team

The "last mile"

continuous delivery

Iteration 0 1 2 3 4

Analysis + Design

Development

Testing + Showcase

Integration + QA Release and operation

Customer

Centralized QA IT Operations

"Agile" team

The "last mile"

Customer

Delivery team
Constant flow of new features into production always

production

readybusiness needs > operational constraints

architecture types

architecture types

application

integration

enterprise

Integration Architecture

coordination

communication

challenges

your

internal app

jms

ftprestjms

open

internal app

database

closed

internal app

soap

closed

external app

jms soapdatabase

rest

en.wikipedia.org/wiki/Fallacies_of_distributed_computing

 1 The network is reliable.
 2 Latency is zero.
 3 Bandwidth is infinite.
 4 The network is secure.
 5 Topology doesn't change.
 6 There is one administrator.
 7 Transport cost is zero.
 8 The network is homogeneous.

integration styles
From Enterprise Integration Patterns by Hohpe and Woolf

file transfer shared database

remote procedure

invocation
messaging

file transfer

file-based processing is expensive, error

processing, timeliness of data synchronization,

data-only transfer

universal integration style, integration

simplicity, system decoupling and system

abstraction

shared database

near-universal integration via SQL, system

abstraction, system decoupling

cannot use persistence caching (ORM),

performance bottleneck issues, schema change

issues, data ownership issues

expand/contract pattern

app v230
compatible with db

v14

DB

version

15

DB

version

14

app v205
compatible with db

v13 and v14

app v234
compatible with db

v14

app v241
compatible with db

v14 and 15

DB

version

13

app v248
compatible with db

v15

Time

app v205
deployed

migrate
db to v14

app v230
deployed

app v234
deployed

app v234
deployed

app v248
deployed

migrate
db to v15

remote procedure

data encapsulation and ownership, external

systems integration via web services, mature

frameworks and tools

tight system coupling due to dependency on

service availability and location knowledge, poor

asynchronous communications

messaging

asynchronous and reliable messaging, highly

decoupled systems, excellent scalability

capabilities, monitoring

external integration beyond firewall,

implementation and testing complexity, cross

platform standards still evolving

Messaging Models

which is the best integration style?

file transfer shared database

remote procedure invocation messaging

?

Enterprise Architecture

Enterprise Architecture

enterprise architecture context

Business Needs

Business Strategy and Operating Model

IT Capabilities

Business Operations and IT Systems & Infrastructure

Enterprise Architecture

EA Governance

Program / ARB

Business and IT

Capabilities Model

Guiding Architecture

Principles & Standards

Business Strategy and Operating Model

Business Operations and IT Systems & Infrastructure

Enterprise Technical

Architecture

S
tr

at
e
g

y
P

la
n
n
in

g
 a

n
d

 D
e
si

g
n

E
xe

cu
ti

o
n

F
e
e
d

b
ac

k
Lo

o
p

- Technology Plan and Roadmap

- Future State Architecture

- Architecture Models

- Transition Plan

- Prioritization Model and Plan

Business

Architecture
- Component Models

enterprise architecture context

from developer to architect

Introduction to JMSAgenda

stuff you know

stuff you know

you don’t know

stuff you don’t know

you don’t know

the knowledge triangle

focus here!

technical breadth

stuff you have to maintain

technical
depth

architectural boundaries

there is an art to defining the box

that development teams can work

in to implement the architecture

architectural boundaries
tight boundaries

architectural boundaries
loose boundaries

architectural boundaries
appropriate boundaries

control freak architect

architect personalities

architect personalities

armchair architect

architect personalities

effective architect

the architect defines the architecture

and design principles used to guide

technology decisions

controlling the boundaries

controlling the boundaries

development team: we decided to incorporate the guava

library for the camel case conversion requirement.  

controlling the layered stack 

"take it out. I only want you to use the core

java api for this application. period."  

controlling the boundaries

development team: we decided to incorporate the guava

library for the camel case conversion requirement.  

controlling the layered stack 

"guava - that's a cool library name. carry on..."  

controlling the boundaries

development team: we decided to incorporate the guava

library for the camel case conversion requirement.  

controlling the layered stack 

if that's the only feature you are leveraging, you should

just use the java api. if there are other features you can

justify, then we can talk about it. 

controlling the boundaries

look for overlaps in existing functionality 

always seek justification for adding a new library 

provide guidance by making it clear what type of libraries

need discussion and approval and which ones don't 

controlling the layered stack 

what design principle would you create to

manage this type of boundary?  

framework 

general purpose  

controlling the boundaries

special

purpose 

loose

boundaries

architect

approval

architect

decision

controlling the layered stack 

development team: we need better performance - can we

access the database directly from the presentation layer?  

controlling the boundaries
pattern governance  

 presentation layer

 persistence layer

 database layer

component

component

component

 business layer component component

component

development team: we need better performance - can we

access the database directly from the presentation layer?  

controlling the boundaries
pattern governance  

 presentation layer

 persistence layer

 database layer

component

component

component

 business layer component component

component

development team: we need better performance - can we

access the database directly from the presentation layer?  

controlling the boundaries
pattern governance  

"no."  

development team: we need better performance - can we

access the database directly from the presentation layer?  

controlling the boundaries
pattern governance  

"it doesn't matter to me. if you think it would

help performance, then go for it."  

development team: we need better performance - can we

access the database directly from the presentation layer?  

controlling the boundaries
pattern governance  

"those layers are closed so that we can better control

change through layer isolation, so no. have you been able

to identify what might be causing the performance issues?"  

 persistence layer component component component

 database layer

 presentation layer

 business layer

component component component

component component component

 services layer component component component

controlling the boundaries
pattern governance  

what design principle would you create to

manage this type of boundary?  

controlling the boundaries
pattern governance  

clearly document and diagram the architecture 

justify your reasons for the architecture decisions 

make sure you effectively communicate your decisions 

what design principle would you create to

manage this type of boundary?  

development team: we added some really cool capabilities

that might be needed sometime in the future...  

controlling the boundaries

architecture scope

"did i tell you to add those capabilities? didn't

think so. take them out."  

development team: we added some really cool capabilities

that might be needed sometime in the future...  

controlling the boundaries

architecture scope

"great forward thinking guys! someday the users might

need that capability, and now we have it ready..."  

development team: we added some really cool capabilities

that might be needed sometime in the future...  

controlling the boundaries

architecture scope

"let's verify those features with the analysts to see if we

need them. if not then we'll take them out. we just need to

make sure we don't do anything to prevent that capability

from being added in the future."  

controlling the boundaries
architecture scope 

adding additional features over and above the requirements adds

additional development, testing, and maintenance time and costs 

this practice can lead to the infinity architecture anti-pattern  

document non-required features, verify it with the user community,

and make sure you don't do anything to restrict that functionality

in the future 

what design principle would you create to

manage this type of boundary?  

Architecture Anti-pattern

Yesterday’s best practice

is tomorrow’s anti-pattern.

Yesterday’s best practice

is tomorrow’s anti-pattern.

www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF

Yesterday’s best practice

is tomorrow’s anti-pattern.

1990

1992

1996

Yesterday’s best practice

is tomorrow’s anti-pattern.

2002

2007

2008

Yesterday’s best practice

is tomorrow’s anti-pattern.

Yesterday’s best practice

is tomorrow’s anti-pattern.

martinfowler.com/bliki/AntiPattern.html

Architecture is abstract
until operationalized.

nealford.com/memeagora/2015/03/30/architecture_is_abstract_until_operationalized.html

Architecture is abstract
until operationalized.

3D 4D2D

view

controller

model

ORM ORM
Hibernate

4.3.8

model
Customer

1.3.5

controller
CustomerInfo

4.3.1

view
AngularJS
1.3.15

Oracle 12c

ORM
Hibernate

4.4.1

model
Customer

1.3.5

controller
CustomerInfo

4.3.1

view
AngularJS
1.3.15

Oracle 12c

nealford.com/memeagora/2015/03/30/architecture_is_abstract_until_operationalized.html

nealford.com

@neal4d

